TARGET RANGE MAXIMUM OF CYCLOSPORINE BLOOD CONCENTRATION TWO HOURS POST DOSE IN STABLE LIVER TRANSPLANT PATIENTS*

J. Li, U. Dahmen, S. Beckebaum, V. Cicinnati, C. Valentin-Gamazo, A. Frilling, M. Malago, C. E. Broelsch

Department of General and Transplantation Surgery, University Hospital Essen, Essen, Germany

INTRODUCTION

Cyclosporine A (CsA) has been a mainstay of immunosuppressive treatment following liver transplantation since its introduction in the 1980s [1]. The absorption phase for the microemulsion form Neoral (Novartis Pharmaceutical Corp., Switzerland) occurs during the first 4 hours after administration and is characterized by rapid changes in blood CsA concentrations and a high degree of variability [2]. It has been shown repeatedly that blood concentration measurement 2 hours after Neoral administration (C2) had a higher correlation with the absorption during the first 4 hours postdose (correlation coefficients ranging from 0.81 to 0.93) than trough levels (correlation coefficients ranging from 0.03 to 0.41) [3], leading to the introduction of C2-monitoring in the early posttransplant period [4, 5, 6]. Incidence of rejection in the first three postoperative months was reduced in patients reaching the recommended C2 target level minimum within a few days [7, 8].

However, the superiority of C2 monitoring for long-term stable liver graft recipient remains controversial, especially in respect to the prevention of drug associated side effects [9, 10, 11]. Moreover, suggested target ranges of C2-level for maintenance therapy vary from 300 up to 750 ng/ml [3, 12, 13, 14]. This study was designed to analyse CsA associated adverse events in respect to their corresponding C2- and C0-levels in stable liver graft recipients.

METHODS

Stable liver graft recipients transplanted at least one year prior to study entry and subjected to a CsA based immunosuppressive regimen were selected as study population. All participating patients provided written informed consent prior to study entry. During the routine follow-up visits with monitoring of the trough levels, patients were asked to stay additional two hours in the outpatient department after being sampled for C0-levels and subsequent intake of their medication.

During the course of the study, the blood sample for C0 measurement was first collected. The second blood sample was taken within 15 minutes of the 2 hours post-dose time for C2 measurement as recommended [3]. The CsA blood concentrations were measured with a monoclonal antibody-based fluorescence
polarization immunoassay system on a TDx analyser (Cyclosporine Monoclonal Whole Blood, Abbott Laboratories, Abbott Park, IL, USA). Patients on standard triple immunosuppressive regimen received CsA in microemulsion form (Neoral) in combination with mycophenolate mofetil (MMF) (CellCept, F.Hoffmann-La Roche AG, Germany) and prednisone (Decortin, Merck KGaA, Germany). Dual therapy consisted of CsA and MMF. CsA monotherapy consisted of 2 daily oral doses of 50-150 mg. The CsA dose was adjusted according to predetermined C0 target range (100-200 ng/ml for CsA monotherapy) [12, 13, 15] and clinical status by two hepatologists (S.B. and V.C.) blinded to the C2 values. In patients with clinically suspected CsA associated adverse events, reduction of the CsA dosage with co-immunosuppression with MMF or steroids was carried out [16, 17]. Percutaneous liver biopsy was performed in case of clinically suspected rejection or recurrence of viral hepatitis.

In addition to the regular physical examination and routine laboratory measurements, patients were interviewed specifically regarding the adverse effects of CsA on the cardiovascular, renal and neurological system by another physician (J.L), see Appendix 1. Hypertension was defined as diastolic blood pressure > 90 mmHg, systolic blood pressure > 160 mmHg or the initiation of new antihypertensive agents post-transplant [18]. Creatinine clearance (CCr) was estimated using serum creatinine and body weight according to the Cockcroft-Gault formula [19]. An arbitrary classification was employed to categorize renal insufficiency. Renal insufficiency was defined as mild (CCr > 70 ml/min), moderate (CCr 40-70 ml/min) or severe (CCr 20-40 ml/min) [20]. Common neurological symptoms in stable liver transplant patients such as tremor, motorial weakness and paresthesia, were documented according to the patient's complaints [21]. Multiple adverse effects were defined as the combination of hypertension and of moderate to severe renal insufficiency together with more than two neurological complaints. Results were reported as means ± standard deviation. Means of variables were compared with a Student's t-test for unpaired data. For assessment of correlations, a bivariate correlation using the Pearson correlation was performed. The chi-square test was used to compare the incidence of side effects between the groups. P-values of <0.05 were considered statistically significant.

RESULTS

Thirty-six patients (10 women and 26 men), with a mean age of 55 ± 8 (39-70) years, were enrolled in the study (Table 1). Cirrhosis due to viral hepatitis (n = 14) and alcoholic liver disease (n = 13) were the major primary diagnoses of the recipients. Thirty-one patients (86%) received CsA-mono therapy. Three patients were on dual regimen (CsA plus MMF). Two patients were on a triple immunosuppressive regimen (CsA plus MMF and prednisone).

The mean observation time for each patients was 9 ± 3 (7-18) months. Each patient had at least 2 interviews (2-4 interviews) with an interval of 3 months (2-4 months). Totally 103 clinical records together with the corresponding paired CsA blood level records were obtained from the 36 patients.

The C0 levels ranged from 90 to 287 ng/ml (143 ± 31 ng/ml) with 92% (95/103) of the results within the therapeutic range and 4% (4/103) above range. The corresponding C2 value ranged from 212 to 1358 ng/ml (672 ± 203 ng/ml). The target range 450-750 ng/ml as suggested by Barakat [12] was used as basis for the analysis. Following this recommendation 14 results (14%) were below the range, 60 results (58%) within the range and 29 results (28%) above the range. In total 37/103 results (36%) were discrepant in respect to both, C0 and C2 target range. A poor correlation between C0 and C2 values was found (correlation coefficient = 0.54) (Fig. 1).

Table 1. Characteristics of the study population (n = 36).

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female: male)</td>
<td>10:26</td>
</tr>
<tr>
<td>Age (yr ± SD)</td>
<td>39-70 (55 ± 8)</td>
</tr>
<tr>
<td>Primary diagnosis in recipients (n)</td>
<td></td>
</tr>
<tr>
<td>Viral hepatitis</td>
<td>14</td>
</tr>
<tr>
<td>Alcoholic liver disease</td>
<td>13</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>4</td>
</tr>
<tr>
<td>Acute liver failure due to intoxication</td>
<td>1</td>
</tr>
<tr>
<td>Primary biliary cirrhosis</td>
<td>1</td>
</tr>
<tr>
<td>Cyst liver disease</td>
<td>1</td>
</tr>
<tr>
<td>Malignant haemangiomia</td>
<td>1</td>
</tr>
<tr>
<td>Metabolic liver disease</td>
<td>1</td>
</tr>
<tr>
<td>Years post LTx</td>
<td>1-13.5 (4.4 ± 3.5)</td>
</tr>
<tr>
<td>Immunosuppression regimen (n)</td>
<td></td>
</tr>
<tr>
<td>CsA</td>
<td>31</td>
</tr>
<tr>
<td>CsA+MMF</td>
<td>3</td>
</tr>
<tr>
<td>CsA+Prednisone+MMF</td>
<td>2</td>
</tr>
</tbody>
</table>

LTx: liver transplantation
CsA: cyclosporine
MMF: mycophenolate mofetil

Fig. 1. C0 values and corresponding C2 values in 103 CsA profiles from 36 stable adult patients more than 1 year after liver transplantation. Target ranges of C0 (100-200 ng/ml) and C2 (450-750 ng/ml) were marked as box. A poor correlation between C0 and C2 value was revealed (correlation coefficient = 0.54).
We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.

A literature survey on C0 target level showed a tendency towards reduction of target maximum along with increasing co-immunosuppression (Table 5). Eighty-nine percent patients in this study were receiving CsA-monotherapy. The target range of C0 was relatively higher in comparison of the target range in co-immunosuppressive regimens [10, 14]. Ninety-two percent C0 profiles were within the target range of 100-200 ng/ml. More than 80% (33/36) of the patients to C2-monitoring. The advantage of C2 monitoring compared to C0 monitoring in reducing rejection in the early postoperative period is now well accepted [23]. However, most centres still adjust the CsA dose especially in long-term patients guided by predose blood concentration, not only because of simplicity of sample collection and cost, but also because of the wide acceptance of the therapeutic blood levels.

Target levels were mainly evaluated in respect to the reduction of rejection in the early posttransplant period [3, 4]. With the increasing number of liver transplant patients surviving 5 years and more, the long-term effects of calcineurin inhibitor-associated side effects, such as hypertension, renal failure and neuropathy are becoming a clinically more and more relevant problem [24]. C2 monitoring and its relevance to the drug toxicity profile in stable liver recipients has not yet been fully evaluated [3, 11, 13]. The target range maximum of CsA blood concentration and its relationship to the incidence and severity of the adverse events are not clear [3,4,11], leading to at least 4 different suggestions reported in the literature (Table 4) [12, 13, 14, 25].

We designed this prospective study to evaluate the upper C2-target level in respect to the occurrence of long-term multiple adverse effects. Drug associated side effects and corresponding C2-levels were determined repeatedly in 3 months intervals and the relative risk was calculated accordingly.
patients presented at the respective visit with at least one symptom leading to the suspicion of CsA related side effects. The high rate of CsA related side effects is very similar to the results from other authors, observed in regimen based on C0 monitoring: the development of hypertension occurred in 62-82% of the patients, the occurrence of abnormal creatinine value in 43%-73% of the patients and presence of neurotoxicity in 25%-47% of liver recipients receiving CsA-based immunosuppression [9,18,21,26,27]. In other words, the potential risk of side effects is not identified utilizing exclusively C0 levels.

Table 4. C2 target range recommended in the literature.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>C2 target range (method)</th>
<th>Related study group and patient number</th>
<th>CsA monotherapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cantarovich [13]</td>
<td>1998</td>
<td>300-600 ng/ml (EMIT)</td>
<td>11 liver recipients more than 12 months post-LTx</td>
<td>8/11 patients</td>
</tr>
<tr>
<td>Levy [25]</td>
<td>2001</td>
<td>600 ng/ml (not mentioned)</td>
<td>110 liver recipients more than 3 months post-LTx</td>
<td>Not mentioned</td>
</tr>
<tr>
<td>Barakat [12]</td>
<td>2002</td>
<td>450-750 ng/ml (EMIT)</td>
<td>10 liver recipients more than 12 months post-LTx</td>
<td>1/10 patients</td>
</tr>
<tr>
<td>Langers [14]</td>
<td>2004</td>
<td>510-690 ng/ml (FPIA)</td>
<td>31 liver recipients more than 6 months post-LTx</td>
<td>6/31 patients</td>
</tr>
</tbody>
</table>

EMIT: enzyme multiplied immunologic technique
FPIA: fluorescence polarisation immunoassay
Ltx: liver transplantation

Table 5. C0 target range mentioned in the literature.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year of publication</th>
<th>Time after LTx</th>
<th>Target range of C0</th>
<th>Immunosuppression regimen: Nr. of patients</th>
</tr>
</thead>
</table>
| Cantarovich [13] | 1998 | Over 1 year | 100-200 ng/ml | CsA:28 (80%)
CsA+Pred.: 6
CsA+Pred+AZA:1 |
| Cohen [15] | 2002 | Over 4 months | 100-200 ng/ml | CsA+Pred.+MMF/AZA |
| Barakat [12] | 2002 | Over 1 year | 100-200 ng/ml | CsA:1 (10%)
CsA+Pred.: 1
CsA+AZA:6
CsA+MMF: 2 |
| Sterneck [11] | 2002 | Over 6 months | 100-150 ng/ml | CsA:11 (18%)
CsA+Pred.: 21
CsA+Pred+AZA:8
CsA+Pred+MMF:1
CsA+AZA:7
CsA+MMF: 15 |
| Teisseyre [10] | 2003 | Over 1 year | 100-150 ng/ml | CsA:9 (20%)
CsA+Pred.: 22
CsA+Pred+AZA:8
CsA+Pred+MMF:3
CsA+AZA:2 |
| Langers [14] | 2004 | Over 6 months | 90-150 ng/ml | CsA:6 (19%)
CsA+Pred.: 8
CsA+Pred+AZA:4
CsA+Pred+MMF:4
CsA+AZA:4
CsA+MMF: 5 |

AZA: azathioprine; CsA: cyclosporine; MMF: mycophenolate mofetil; Ltx: liver transplantation; Pred: prednisone
Following the target range of Barakat (450-750 ng/ml) who suggested the highest target range maximum reported in long-term liver recipients, 47% (17/36) of our patients had at least one C2 value exceeding the target range. All of them presented with at least one adverse event.

We evaluated C2 levels repeatedly in 3-months intervals and analysed the relationship between side effects and at least 2 repeated C2 levels exceeding the upper range level of 750 ng/ml. Statistical analysis revealed a relative risk of 3.11 to develop multiple adverse effects in this population. Repeated C2 levels above range were always associated with the presence of multiple adverse effects. The data presented here support that the target level above 750 ng/ml should not be exceeded.

In our study, 10 patients with multiple adverse effects had C2 values above the predefined maximum. However, C0 values in seven of them (patient number 1, 3, 4, 5, 6, 13, 16) were always within the target range (Table 3 and Fig. 2). In other words, CsA overdosing was identified as possible cause of adverse events when CsA monitoring was only based on C0 value, but was only visible upon repeated C2-measurements. Those patients may potentially benefit from a dose reduction based on C2-monitoring without putting them at risk for rejection due to under-immunosuppression. As C2 is regarded as a surrogate of maximal concentration of CsA, the repeated exposure to high CsA concentration might be the cause of the adverse events. Keeping the C2 levels below the target range maximum may help to reduce the risk for developing multiple adverse effects associated with CsA.

Conclusion

In this study we prospectively analysed the role of C2 monitoring in stable liver transplant recipients on maintenance immunosuppression. C2 levels exceeding 750 ng/ml at 2 repeated time points in 3 months intervals was identified as a risk factor for development of multiple adverse effects related to CsA.

Fig. 2. CsA overdosing, identified by repeated C2-levels but not always by C0-monitoring in patients with multiple adverse effects.

REFERENCES

Received: February 13, 2006 / Accepted: March 2, 2006

Address for correspondence:
PD Dr. med. Uta Dahmen
Allgemein-Visceral-und Transplantationschirurgie
Universitätsklinikum Essen
Hufelandstr. 55
D-45122 Essen, Germany
Tel.: +49-201-723 1121
Fax.: +49-201-723 1121
Email: uta.dahmen@uni-essen.de
Appendix 1. Questionnaire for liver transplanted patients regarding C0/C2 monitoring and general adverse effects

Date ______________________

1. General data of the patient:
 - Name ___
 - Birthday ___
 - Sex ___
 - Date of liver transplantation ___
 - Indication of liver transplantation __
 - Current body weight: ________________ kg
 - Current blood pressure ________________ mmHg

2. Document of CsA:
 First blood sample at _____________ clock
 [↓]
 Actual dose of CsA (Sandimmun® Optoral) ________ mg
 [↓]
 Second blood sample at ___________ clock

3. CsA level
 C0____________ng/ml
 C2____________ng/ml
 (only for medical staff)

3. Did you have any of the following disease before LTx?
 o Hypertension ..yes / no
 o Diabetes mellitus ..yes / no

4. Do you have any of the following symptoms/complaints since last visit?
 o Fever or chills ..yes / no
 o Increased body hair growthyes / no
 o Gingival hyperplasia ..yes / no
 o Gastrointestinal complains
 o Upper abdominal pain ..yes / no
 o Reduced appetite ..yes / no
 o Nausea/vomiting ...yes / no
 o Diarrhea ...yes / no
 o Neurological complaints
 o Tremor ...yes / no
 o Unusual tiredness or weaknessyes / no
 o Persisting headache ..yes / no
 o Cribbed finger/numbness or tinglingyes / no
 o “Burning” hands or feet ..yes / no
 o Weakness of legs ..yes / no
 o Renal symptoms
 o Obvious less urine output than before (i.e.: less than 2 time a day)yes / no
 o Unusual urine output (i.e.: painful or difficult urination)yes / no
 o Elevated blood pressure with/without medicationsyes / no
 o Uncontrolled blood sugar with/without medicationsyes / no

5. Other complaints
 __
 __
 __