RETINAL ARTERIAL OCCLUSION DUE TO EMBOLISM OF SUSPECTED CARDIAC TUMORS – REPORT ON TWO PATIENTS AND REVIEW OF THE TOPIC

D. Schmidt1, A. Hetzel2, A. Geibel-Zehender3

1Department of Ophthalmology,
2Department of Neurology,
3Department of Internal Medicine,
University of Freiburg, Germany

Abstract
Background: Ophthalmic complications due to heart tumors are rare.
Patients: This case report describes two patients with ocular complications, caused by a suspected cardiac tumor. A 56-year-old woman with arterial hypertension had a severe episode of headache coinciding with an acute loss of vision in her right eye and left-sided hemiparesis. A 20-year-old woman noticed sudden transient visual loss in her right eye.
Result: The 56-year-old woman had an infarction on the right side of the middle and posterior cerebral arteries and, simultaneously, a central retinal artery occlusion (CRAO) in her right eye. Echocardiography revealed a tumor in the left atrium. The tumor disappeared after treatment with phenprocoumon within a few days. The diagnosis of a cardiac thrombus was made. The 20-year-old woman noticed recurrent episodes of sudden, transient visual loss in her right eye. A branch retinal arterial occlusion (BRAO) in her right eye was diagnosed. Echocardiography revealed a myxoma in the left atrium. The tumor was successfully excised surgically.
Conclusion: In any vascular disturbance in the eye suspected to be embolic in origin, echocardiography should be carried out in order to exclude the presence of a heart disease.

Key words: central retinal artery occlusion, branch retinal artery occlusion, myxoma, intracardial thrombus, echocardiography

INTRODUCTION

Sudden visual disturbances are always suspected to be caused by severe vascular diseases. Diseases of the carotid artery or the heart may lead to embolic events in the eye, i.e. central retinal artery occlusion or branch retinal artery occlusion. It is mandatory to perform echocardiography and Doppler sonography of the extracranial and intracranial carotid arteries to identify the cause of the ocular vascular disease. Atrial myxomas are rare. Surgery offers the possibility to prevent early re-embolism. Therefore, early diagnosis is essential to reduce morbidity or mortality from cardiac dysfunction and embolic complications. Diagnosis of cardiac tumors are non-specific; cardiac imaging by echocardiography, computer tomography, or angiography are important. However, transesophageal echocardiography is superior to other methods of examination, as was demonstrated by Saurbier et al. (1997). Benign tumors of the heart can occur as “myxoma syndrome”, defined as cardiac myxoma with lentiginosis, extracardiac tumors, and family clustering of cardiac myxomas. However, most cardiac tumors are “sporadic myxomas”. Geibel et al. (1996) evaluated 72 consecutive patients with cardiac and/or mediastinal tumor lesions echocardiographically. Twenty-three patients had benign tumors located in the hearts of 20 patients. Three tumor lesions were situated outside the heart, namely a pericardial cyst, dermoid cyst, and teratoma. Echocardiography is important for the localization, however histology is necessary for final assessment of the tumor.

For decades, cardiogenic embolism has accounted for about 15% of all ischemic strokes in clinical studies (Cerebral Embolism Task Force 1986).

The severity of embolisms in retinal arteries depends on their type, quantity and size. The first author to provide a detailed description of central retinal artery occlusion (CRAO) in a patient with a cardiac myxoma was Marchand (1894). We describe the findings diagnosed by echocardiography of two patients with ocular complications due to embolic events of cardiac tumors.

CASE REPORTS

1. CENTRAL RETINAL ARTERY OCCLUSION (CRAO) IN A PATIENT WITH SUSPECTED MYXOMA

A 56-year-old woman with arterial hypertension had suffered from migraine for about 30 years. The patient had sinus rhythm and no tachycardia. She developed a severe episode of headache together with an acute loss of vision in her right eye concurrent with a left-sided hemiparesis in November 1998. The totally blind right eye showed the typical signs of a central retinal artery occlusion. CT revealed a right-sided infarction of the middle and posterior cerebral arteries. Echocardiography showed the signs typical of a tumor in the left atrium.
A myxoma was suspected, but before surgery was planned, the patient was treated with phenprocoumon (Marcumar®) (Fig. 1). With this treatment, the tumor completely resolved within a few days, revealing that a large thrombus was the explanation for the echocardiographically-diagnosed finding. Upon examination took place several months and years later, the eye remained totally blind and the hemiparesis persisted unchanged.

2. BRANCH RETINAL ARTERY OCCLUSION IN A PATIENT WITH A TRUE ATRIAL MYXOMA

A 20-year-old woman noticed a sudden transient visual loss in her right eye in 1997. About three years prior to that episode, she had noted visual disturbances such as glittering in her right eye together with headache that were interpreted as migraine attacks. There were recurrences of these episodes, and in the summer of 2000, a branch retinal arterial occlusion in her right eye was diagnosed. Echocardiography showed a tumor in the left atrium that proved to be a typical myxoma which was surgically removed (Fig. 2).

The visual field examination four weeks after the operation showed a defect of the nasal superior quadrant. Retinal edema had completely resolved and the artery showed regular blood flow.

In addition, we summarized the data from the case histories in the literature of 27 patients who went blind due to central retinal artery occlusion (CRAO) (22), unilateral optic atrophy (4), anterior ischemic optic neuropathy (AION) (1).

In this overview of the literature, we demonstrate that most patients had severe neurological deficits, most of them suffered hemiparesis in addition to visual loss (16), embolic events in the extremities (3), dysphasia (1), syncopeal attack (1), transient aphasia (1), prosopagnosia (1), transient dizziness (1), and two patients died.

The mean age of the 27 patients was 37.26 years (8-75), 14 females and 13 males, indicating that the pa-
patients in this group were older than the 13 patients from Table 1.

GROUP III. PATIENTS WITH SEVERE NEURO-OPTHALMOLOGICAL SIGNS DEFICITS

(Table 3)

Furthermore, we collected the data from 20 case histories of the literature with neuro-ophthalmological signs, such as hemianopia (most were homonymous) (9), diplopia or gaze paresis (4), nystagmus (3), skew deviation (1), Parinaud syndrome (1), absent corneal reflexes (1), or papilledema (1). We found 19 patients in this group who also had severe neurological deficits; most of them revealed hemiplegia due to stroke (16), loss of consciousness (1), weakness in one arm (1), ataxia (1), and TIA (1).

The mean age of the 20 patients was 46 (21-64) years, 12 females and eight males. In this group, patient mean age was also higher than that of patients in group I.

DISCUSSION

Various diseases can lead to vascular retinal obstructions, and any non-inflammatory changes in the retinal arteries may be significant. They may be caused by a local thrombotic mechanism, but it is more often due to an embolic process originating from the heart or the carotid artery (Mangat et al. 1995). We describe
Table 2. Central retinal artery occlusion (CRAO) or unilateral optic atrophy due to myxoma of the heart.

<table>
<thead>
<tr>
<th>Author</th>
<th>Age, signs of generalized embolic infarctions</th>
<th>Ophthalmological signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Anderson and Lubow (1973)</td>
<td>13, m loss of consciousness, left hemiparesis, aphasia, painful right foot, red spots on the sole of his foot</td>
<td>impaired saccadic movements to the left, RE: CRAO</td>
</tr>
<tr>
<td>2. Budzilovich et al. (1979)</td>
<td>62, f 1. right hemiparesis, aphasia, right central facial weakness 2. loss of consciousness, decerebrate posture, death due to occlusion of the left middle cerebral artery</td>
<td>LE: “optic atrophy” and empty arterioles in the fundus, ptosis 2. LE: third nerve palsy</td>
</tr>
<tr>
<td>3. Campbell (1974)</td>
<td>45, m partial right hemiparesis</td>
<td>LE: embolic CRAO</td>
</tr>
<tr>
<td>4. Cogan and Wray (1975)</td>
<td>17, m 1. malaise, night sweats, anorexia, pains in the legs, red spots on the hands, 2. right hemiplegia, aphasia 3. bilateral occlusion of iliac arteries (saddle embolus)</td>
<td>LE: CRAO</td>
</tr>
<tr>
<td>5. Cogan and Wray (1975)</td>
<td>20, f 1. vertigo due to vascular occlusion of the brain stem, diffuse aneurysms of the cerebral cortical arteries, transient swelling and discoloration of one foot, 2. seizures, tetraplegia, death due to embolic infarction in the cerebrum, cerebellum and brain stem</td>
<td>1. third nerve paralysis, 2. right-sided internuclear ophthalmoplegia, branch retinal artery occlusion 3. left homonymous hemianopia, LE: CRAO</td>
</tr>
<tr>
<td>6. Donoso et al. (1981)</td>
<td>55, m pain in the right leg, obstruction of the popliteal artery, mild dysphasia, decreased sensation over the right side of the face</td>
<td>LE: CRAO</td>
</tr>
<tr>
<td>7. Furlong and Verdile (1995)</td>
<td>65, f numbness in right upper and lower extremities, left frontal headache</td>
<td>LE: pale fundus (suspected CRAO)</td>
</tr>
<tr>
<td>8. Gleason (1955)</td>
<td>13, f syncopal attack, splinter hemorrhages in the nailbeds, low-grade fever, leukocytosis, gangrene of the right toes, auricular fibrillation</td>
<td>LE: CRAO</td>
</tr>
<tr>
<td>9. Jampol et al. (1973)</td>
<td>37, f episodic joint pains, low-grade fewer, rash on the sole of the feet, infarct of the kidney, episode of hearing loss, transient aphasia</td>
<td>LE: CRAO</td>
</tr>
<tr>
<td>10. Knepper et al. (1988)</td>
<td>75, m confabulation, denial of visual loss, prosopagnosia</td>
<td>1. right homonymous hemianopia 2. LE: pale optic disc (blind eye),</td>
</tr>
<tr>
<td>12. Lewis (1994)</td>
<td>53, f right hemiparesis, aphasia due to a left lenticostriate infarct</td>
<td>LE: CRAO and choroidal infarction, no cherry-red spot</td>
</tr>
<tr>
<td>13. Marchand (1894)</td>
<td>37, m vertigo, right hemiparesis, aphasia</td>
<td>LE: CRAO</td>
</tr>
<tr>
<td>14. Maroon and Campbell (1969)</td>
<td>29, m pain and tenderness in the legs, minute hemorrhagic spots on the palms of both hands, splinter hemorrhages in the nail beds, sudden hemiparesis, “pseudoaneurysms” on branches of the right middle cerebral artery</td>
<td>RE: optic atrophy</td>
</tr>
<tr>
<td>15. Nettl et al. (1957)</td>
<td>31, f headache, left hemiplegia, death due to embolic occlusion of the right internal carotid artery</td>
<td>papilledema, RE: CRAO</td>
</tr>
<tr>
<td>16. New et al. (1970)</td>
<td>17, m tender red spots on the hands, stabbing chest pain, aching and pain in the legs, diminished left carotid pulse, diminished left superficial temporal pulse</td>
<td>LE: CRAO</td>
</tr>
</tbody>
</table>
herein the case histories of two patients with embolic events due to cardiac tumors and we also collected case histories from patients with cardiac myxomas from the literature. In our first patient, who showed sinus rhythm and no tachycardia, an embolic episode caused by cardiac arrhythmia was unlikely. The disappearance of the “tumor” after anticoagulation was proof that no myxoma existed. However, the second patient presented a myxoma, as revealed by surgery and histological evaluation. It is important to emphasize that even in artery occlusion of a small retinal branch of the eye, such an embolic event could be caused by a cardiac tumor. Therefore, in any vascular disturbance in the eye, cardiac disease should be suspected and echocardiography should be carried out. If no change in tumor size after conservative treatment occurs, surgical excision of the tumor is indicated.

Retinal emboli consist either of cholesterol (“Hollenhorst plaques”), or fibrin, or they are calcareous (originating from the heart valves), or a combination of these different embolic types may occur. Retinal emboli caused by myxomas are rare, as myxomas are rare cardiac tumors and - by no means does every myxoma cause retinal emboli. Heart valve vegetations (Greven et al. 1995, Schmidt and Zehender 1999), fat emboli after bone fracture, parasites, air, and even particles of replacement heart valves have also caused vascular retinal occlusions (Ffytche 1974).

Cholesterol and platelet-fibrin emboli occur more often than calcific emboli (Arruga and Sanders 1982).
Table 3. Neuro-ophthalmological signs in connection with stroke due to myxoma of the heart.

<table>
<thead>
<tr>
<th>Author</th>
<th>Age, sex</th>
<th>Signs of embolic infarctions, mainly neurological signs</th>
<th>Ophthalmological signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Branch et al. (1985)</td>
<td>53 f</td>
<td>migraine headache, occasional numbness and tingling in the hand, arteriogram: multiple fusiform aneurysms in the distributions of the carotid arteries, occlusion of the right posterior cerebral artery</td>
<td>sudden left homonymous hemianopia</td>
</tr>
<tr>
<td>2. Browne et al. (1993)</td>
<td>63 f</td>
<td>1. ischemic stroke of the left middle cerebral artery [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>1. no eye findings</td>
</tr>
<tr>
<td>3. Burton and Johnston (1970)</td>
<td>41 f</td>
<td>right-sided hemihypalgiesa, dysphasia, headache [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>right hemianopia [lasting for 6 hours]</td>
</tr>
<tr>
<td>4. Butler et al. (1986)</td>
<td>31 f</td>
<td>left hemiparesis, left hemianesthesia [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>left homonymous hemianopia [incongruous]</td>
</tr>
<tr>
<td>5. Damasio et al. (1975)</td>
<td>43 f</td>
<td>central left facial palsy [episode], left hemiparesis [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>diplopia [episode], limitation in upward gaze, rotatory nystagmus</td>
</tr>
<tr>
<td>6. Desousa et al. (1978)</td>
<td>44 f</td>
<td>three strokes in four years, right hemiplegia, right facial weakness [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>bilateral papilledema, right hemianopia</td>
</tr>
<tr>
<td>7. Frank et al. (1979)</td>
<td>49 f</td>
<td>1. progressive defects in memory, bifrontal headaches, anemia, vertigo, intermittent fever hemianopia [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>right inferior homonymous quadrantanopia</td>
</tr>
<tr>
<td>8. Gorlitzer (1934)</td>
<td>50 m</td>
<td>loss of consciousness due to cerebral hemorrhages, seizures [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>horizontal nystagmus</td>
</tr>
<tr>
<td>9. Huston et al. (1978)</td>
<td>38 m</td>
<td>1. rash over the dorsum of the right foot, 2. cramping pain in the right forearm, discoloration of the right index finger 3. disorientation, ataxia, nausea, left facial paresis 4. left hemiparesis, ataxia [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>left internuclear ophthalmoplegia, homonymous hemianopia</td>
</tr>
<tr>
<td>10. Knepper et al. (1988)</td>
<td>57 m</td>
<td>ataxia, difficulty finding the correct words, apnea [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>1-hour episode of binocular vertical diplopia</td>
</tr>
<tr>
<td>11. Manschot (1959)</td>
<td>57 m</td>
<td>right hemiparesis, right central facial paresis, aphasia, coma [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>gaze paresis to the right, suspicion of juxtapapillary chorioretinitis, choked disc</td>
</tr>
<tr>
<td>12. Morton-Bours et al. (2000)</td>
<td>51 m</td>
<td>MRI: bilateral hyperintense lesions in the cerebellum, triangular hyperintense lesion in the mid-pons [history of infarction] weakness and dysmetria of the right arm and leg [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>horizontal nystagmus on left gaze</td>
</tr>
<tr>
<td>13. Price et al. (1970)</td>
<td>21 f</td>
<td>1. headache, confusion 2. pain, swelling, discoloration of her left foot, 3. left hemiparesis, sudden right-sided headache 4. convulsive seizures, deep coma [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>1. diplopia, slight ptosis, mydriasis, weakness of the left medial and superior rectus muscle 2. RE: small retinal hemorrhage, left homonymous hemianopia 3. skew deviation, vertical bobbing movements 4. fundi became pale and ischemic</td>
</tr>
<tr>
<td>15. Rankin and DeSousa (1978)</td>
<td>44 f</td>
<td>1. third stroke with right hemiplegia and aphasia 2. right central facial weakness and spastic right hemiplegia, lethargia due to metastasis of myxoma in the left temporal lobe [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>bilateral papilledema, right hemianopia</td>
</tr>
<tr>
<td>16. Sandok et al. (1980)</td>
<td>30 f</td>
<td>vertigo, left-sided paresis and sensory loss [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>diplopia</td>
</tr>
<tr>
<td>17. Selzer et al. (1972)</td>
<td>64 m</td>
<td>1. sudden hemiplegia, 2. paresis of fingers of the left hand 3. right hemiplegia, aphasia [coma, no spontaneous motor movements, death due to multiple intracranial emboli]</td>
<td>1. no eye signs 2. transient double vision 3. unilateral papilledema on the left side</td>
</tr>
</tbody>
</table>
Other rare embolic sources exist, such as t alc, atrial myxoma, or thrombi from the heart or an aneurysm. Emboli in 21 young adults (under 40 years of age) were described by Greven et al. (1995). Cardiac valvular disease was the most commonly recognized etiologic agent of an arterial occlusion in the retina in young patients. Some of them presented an atrial myxoma, others bacterial endocarditis. A hypercoagulated state with oral contraceptives and cigarette smoking, or inherited protein S-deficiency were other causes of the arterial retinal disease. On the other hand, retinal arterial occlusions may also arise in arterial hypertension (Hayreh 1971), or may be due to an arterial spasm in migraine (Greven et al. 1995, Humphrey 1979).

A cardiac myxoma seems to be a rare cause of vascular disturbance in the eye, however, occasional episodes due to emboli of a cardiac tumor have often been observed in the literature (Table 1-3). Peripheral embolic events are often misleading, so that wrong diagnoses were made previously, before echocardiography became routine during medical investigations. A left atrial myxoma was frequently confused with mitral stenosis, an erroneous antemortem diagnosis (Prichard 1951, Newman et al. 1966). Left atrial myxomas have also been confused with inflammatory disease, such as lupus erythematosus (Yarnell et al. 1971), Hamman-Rich syndrome, “myocarditis”, subacute bacterial endocarditis, or even acute rheumatic fever (Anderson and Lubow 1973, Bigelow et al. 1969, Goodwin et al. 1962, Manns et al. 1986, New et al. 1970). Other suspected diagnoses were tuberculous inflammatory edema of the fundus (Manschot 1959), multiple sclerosis (Cogan and Wray 1975), cerebral vasculitis (Reichmann et al. 1992), vasculitis with Raynaud’s phenomenon (Huston et al. 1978), polycystic nodosa (Leonhardt and Kullenberg 1977), or temporal arteritis Horton (Scala et al. 1986).

Mahar et al. (1979) found a primary cardiac myxosarcoma in a 30-month-old child who showed right hemiparesis with aphasia and right homonymous hemianopia. Transesophageal echocardiography in particular is a useful tool for detecting cardiac tumors early. However, some tumors are clinically silent and do not show any signs or symptoms during the early growth phase. Early recognition of cardiac signs and symptoms is necessary. Pinede et al. (2001) reported on 112 patients with left atrial myxomas. They divided the data into two groups according to the pre- and post-echocardiographic periods:

1. between 1959 and 1977, when the only diagnostic methods were angiography and cardiac catheterization. 14 patients (12.5%) underwent surgery.
2. since 1977 with 2-dimensional echocardiographic use (transsthoracic and transesophageal), about five patients per year had undergone surgery (98 patients, 87.5%).

REFERENCES

Arruga J, Sanders MD. Ophthalmologic findings in 70 patients with evidence of retinal embolism. Ophthalmology 1982; 89: 1336-1347
Browne WT, Wijdicks EF, Paris JF, Viggiano RW. Fulminant brain necrosis from atrial myxoma showers. Stroke 1993; 24: 1090-1092
Cerebral Embolism Task Force. Cardiogenic brain embolism. Arch Neurol 1986; 43: 71-84
Desousa AL, Muller J, Campbell RL, Batntitzky S, Rankin L. Atrial myxoma: a review of the neurologic complica-

46 years (21-64)
left hemiplegia 3
TIA left side, 50% stenosis of the right carotid bifurcation, left-sided hyperreflexia 1
hemiplegia 9
diplopia or gaze paresis: 4
nystagmus: 3
Parinaud syndrome: 1
skew deviation: 1
absent corneal reflexes: 1
papilledema: 1

18. Yarnell et al. (1971) 53, m TIA left side, 50% stenosis of the right carotid bifurcation, left-sided hyperreflexia 1
hemiplegia 9
diplopia or gaze paresis: 4
nystagmus: 3
Parinaud syndrome: 1
skew deviation: 1
absent corneal reflexes: 1
papilledema: 1

19. Yarnell et al. (1971) 46, f left hemiplegia 1
left homonymous hemianopia 1
blurring of vision, rotatory nystagmus 1

20. Yufe et al. (1976) 46, m 1. myalgia, fleeting arthralgias, petechial rash on the arms, 2. impaired speech 2. right homonymous hemianopia 1
1. transient blindness in both eyes. lasting 5 to 10 minutes, 2. right homonymous hemianopia
tions, metastases, and recurrences. J Neurol Neurosurg Psychiat 1978; 41: 1119-124

Donalda LR, Emanuel RW, Earl CJ. The role of two-dimension-

eleven echodoppler in the detection of potential-
ably embolic intracardiac masses in patients with cerebral is-

Donoso LA, Magargal LE, Eiferman RA, Jaegers KR. Recur-
rent vascular obstructions from left atrial myxoma. Neu-
ro-ophthalnol 1981; 2: 59-65

Ffytche TJ. A rationalization of treatment of central retinal

Frank RA, Shalen PR, Harvey DG, Berg L, Ferguson TB,
Schwartz HG. Atrial myxoma with intellectual decline
and cerebral growths on CT scan. Ann Neurol 1979; 5: 396-400

Furlong BR, Verdeil VP. Myxomatous embolization resulting

Geibel A, Kasper W, Keck A, Hofmann Th, Konstantinides
S, Just H. Diagnosis, localization and evaluation of malign-
nancy of heart and mediastinal tumors by conventional
and transesophageal echocardiography. Acta Cardiologi-
1996; LI: 395-408

Gleason IO. Primary myxoma of the heart. A case simulating
rheumatic and bacterial endocarditis. Cancer 1955; 8: 839-844

Goodwin JF, Stanfield CA, Steiner RE, Bentall HH, Sayed
HM, Bloom VR, Bishop MB. Clinical features of left atra-
ial myxoma. Thorax 1962; 17: 91-110

Gorlitzer V. Myxom des Herzens mit multiplen Gehirnbe-
bolen. Centrallbl allg Pathol pathol Anat 1934; 61: 115-

Greven CM, Slusher MM, Weaver RG. Retinal arterial occlu-
sions in young adults. Am J Ophthalmol 1995; 120: 776-

Hahs SC. Pathogenesis of occlusion of the central retinal

Humphrey WT. Central retinal artery spasm. Ann Ophthal-
1979; 11: 877-881

Huston KA, Combs JJ, Lie JT, Giuliani ER. Left atrial myx-
53: 752-756

Jampol LM, Wong AS, Albert DM. Atrial myxoma and cen-

Knepper LE, Biller J, Adams HP, Bruno A. Neurologic mani-
festations of atrial myxoma. A 12-year experience and re-

Landers C, Baumann R, Cottrill CM. Embolic strokes in an 8-

Leonhardt ETG, Kullenberg KPG. Bilateral atrial myxomas
with multiple arterial aneurysms - a syndrome mimicking

Lewis JM. Multiple retinal occlusions from a left atrial myx-

MacGregor GA, Cullen RA. The syndrome of fever, anemia,
and high sedimentation rate with an atrial myxoma. Brit
Med J 1959; 2: 999-993

Mahar IJ, Lie JT, Groover RV, Seward JB, Puga FJ, Feldt
RH. Primary cardiac myxosarcoma in a child. Mayo Clin
Proc 1979; 54: 261-266

M. Retinal artery occlusion. Surv Ophthalmol 1995; 40:
145-156

Staritz M, Wanitschke R, Oelert H, Meyer zum Büschen-
feld KH. Myxom des rechten Vorhofs. Seltene Differen-
tialdiagnose bei Fieber unklarer Genese. Dtsch med
Wochenschr 1986; 111: 1106-1109

Manschot WA. Embolism of the central retinal artery. Origi-
nating from endocardial myxoma. Am J Ophthalmol
1959; 48: 381-385

Marchand Fl. Zur Kenntnis der Embolie und Trombose der
Gehirnarterien, zugleich ein Beitrag zur Casuistik der
primären Herztumoren und der gekreuzten Embolie. Berl
Klin Wochenschr 1894; 31: 2-5, 36-38, 62-64

Maroon JC, Campbell RL. Atrial myxoma: a treatable cause

Morton-Bours EC, Jacobs MB, Albers GW. Eyes wide open.

Nef N, Vrcha L, Sverák J, Herout V. Pseudotumor cerebri bei
Herzpolyp. Schweiz Med Wochenshr 1957; 87: 317-320

New PFJ, Price DL, Carter B. Cerebral angiography in car-
diac myxoma. Correlation of angiographic and
histopathological findings. Radiology 1970; 96: 335-345

Newman HA, Cordell AR, Prichard RW. Intracardiac myx-
omas. Literature review and report of six cases, one suc-

Pinede I., Duhaut P, Loire R. Clinical presentation of left atri-
al cardiac myxoma. A series of 112 consecutive cases.
Medicine 2001; 80: 159-172

Portini G, Scassellati-Sforzolini B, Mariotti C, Giuliani M,
Giovannini A. Plurifocal cilioretinal occlusion as the pre-
senting symptom of cardiac myxoma. Retina 2000; 20:
550-552

Price DL, Harris JL, New PFJ, Cantu RC. Cardiac myxoma.
A clinicopathologic and angiographic study. Arch Neurol
1970; 23: 558-567

Prichard RW. Tumors of the heart. Review of the subject and
report of one hundred and fifty cases. Arch Pathol Lab
Med 1951; 51: 98-128

Refuse PE, Nicolle DA, Hunnik CML, Pringle CE. Left atrial
myxoma causing ophthalmic artery occlusion. Eye 1997;
11: 25-29

Rankin DI, DeSousa AL. Metastatic atrial myxoma presenting
as intracranial mass. Chest 1978; 74: 451-452

Reichling W. Embolie in die Zentralarterie und mehrere Ge-
fässe des Zünnchen Gefäßskranzes bei Pseudomyxom
des Herzens. Ber Dtsch Ophthalmol Ges 1934, 50. Zu-
sammenkunft, pp 331-336

Reichmann H, Romberg-Hahlosrer R, Hofmann E, Becker
T, Mertens HG. Neurological long-term follow-up in left
atrial myxoma: are late complications frequent or rare?
J Neurol 1992; 239: 170-174

Salehian O, Demers C, Patel A. Atrial myxoma presenting as
isolated unilateral blindness: a case report and review of the
literature. Can J Cardiol 2001; 17: 898-900

Sandok BA, von Estorff I, Giuliani ER. Subsequent neuro-
logical events in patients with atrial myxoma. Ann Neurol
1980; 8: 305-307

Saurbier B, Geibel A, Gehelmann M, Konstantinides S, Kasper
W, Spillner G, Schöllhorn J, Beyersdorf F, Just H. "Myx-
oma-Syndrom" - eine "benigne" Erkrankung mit "ma-
lignem" Krankheitsverlauf. Z Kardiol 1997; 86: 592-597

Schmidt D, Zehender M. Arterienverschluß des Auges bei infek-
tiosis Endokarditis. Ophthalmologe 1999; 96: 264-266

Schwarz GA, Schwartzman RJ, Joyner CR. Atrial myxoma.

Selzer A, Sakai E, Popper R. Protein clinical manifestations

Stoane L, Allen JH, Collins HA. Radiologic observations in
cerebral embolization from left heart myxomas. Radiolo-
gy 1966; 87: 262-266

Sibcyers HD, Boake WC. Coronary and retinal embolism from
left atrial myxoma. Arch Pathol 1971; 91: 179-182

Thompson J, Kapoor W, Wechsler LR. Multiple strokes due
to atrial myxoma with a negative echocardiogram. Stroke
1988; 19: 1570-1571

Thompson JR, Simmons CR. Arterial embolus. Manifestation
of unsuspected myxoma. JAMA 1974; 228: 864-865

Tipton BK, Robertson JT, Robertson JH. Embolism to the
central nervous system from cardiac myxoma. J Neuro-
surg 1977; 47: 937-940

Yarnell PR, Spann JF, Dougherty J, Mason DT. Episodic central nervous system ischemia of undetermined cause: Relation to occult left atrial myxoma. Stroke 1971; 2: 35-40

Received: March 23, 2005 / Accepted: April 15, 2005

Address for correspondence:
Dieter Schmidt, M.D.
Professor of Ophthalmology.
Univ.-Augenklinik
Killianstr. 5
D-79106 Freiburg, Germany
Phone: 761-270-4001
E-mail: Dieter.Schmidt@uniklinik-freiburg.de