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Abstract
HIV infects target cells by binding of  its envelope
gp120 protein to CD4 and a coreceptor on the cell
surface. In vivo, the different HIV-strains use either
CCR5 or CXCR4 as coreceptor. CCR5-using strains
are named R5 viruses, while CXCR4-using strains are
named X4. X4 viruses usually occur in the later stages.
Coreceptor usage is a marker for disease progression.
Additionally interest on coreceptors continually raises
as a consequence of  the development of  a new class
of  antiretroviral drugs, namely the coreceptor antago-
nists or blockers. These specific drugs block the CCR5
or the CXCR4 coreceptors. So far, the CXCR4 block-
ers are not allowed to be used in the clinical practice
due to their severe side effects. On the other hand,
CCR5 blockers are currently in clinical practice, al-
though they can only be administered after a baseline
determination of  the coreceptor usage of  the predom-
inant viral strain. Most of  the coreceptor analyses in
clinical cohorts have been performed with commer-
cially available phenotypic assays. As for resistance
testing of  NRTIs, NNRTIs and PIs, efforts have also
been made to predict the coreceptor usage from the
genotype of  the viruses. Different rules have been
published based on the amino acid sequence of  the
Env-V3 region of  HIV-gp120, which is known to be
the major determinant of  coreceptor usage. Among
these, the most widely used is the 11/25 rule. Recently,
bioinformatics driven prediction systems have been
developed. Three of  the interpretation systems are
freely available via internet: WetCat, WebPSSM,
geno2pheno[coreceptor]. All three systems focus on the
Env-V3 region and take the amino acid sequence only
into account. They learn from phenotypic and corre-
sponding genotypic data. So far, two cohorts have
been analyzed with such a genotypic approach and
provided frequencies of  R5 virus strains that are with-
in the range of  those reported with phenotypic assays.
For one of  the systems, geno2pheno[coreceptor], addi-
tional clinical data (e.g. CD4+T-cell counts) or structur-
al information can be used to improve the prediction.
Such genotypic systems provide the possibility for
rapid screening of  patients who may be administered
with CCR5 blockers like the recently licensed Maravi-
roc.

INTRODUCTION

HIV infection begins with the attachment of  the viri-
ons to the cell surface mediated by an interaction be-

tween the extracellular domain of  the viral envelope
protein (Env or gp120), the CD4 receptor and a cellu-
lar chemokine receptor. In vivo only the chemokine re-
ceptors CCR5 and CXCR4 play a role for HIV-1 and
HIV-2 infection [1, 2]. The coreceptor usage (also
named tropism) depends on the HIV strain and allows
for the classification in i) R5 for those viral strains us-
ing CCR5, ii) X4 for those using CXCR4 and iii) R5X4
for the strains able to use both coreceptors. 

The coreceptor usage is associated with disease pro-
gression in untreated patients [3, 4] and response to
antiretroviral therapy (HAART) [4-10]. In addition, the
recent developments of  antiretrovirals which specifi-
cally block the CCR5 coreceptor (coreceptor antago-
nists or blockers) require the use of  prediction tools
for coreceptor usage. Most studies have shown that in
vivo R5 tropism is the prevalent phenotype in the early
stages of  the HIV infection, irrespective of  the trans-
mission route and the predominant viral tropism pre-
sent in the donor [11-14]. CXCR4-using strains evolve
later in 10-20% of  the therapy naïve patients and 30-
60% of  the severely immunodeficient HAART-experi-
enced patients [3, 4, 15-24]. As the reasons for this
non-systematic switch are still unknown and CCR5
blockers only work if  the patient displays a prevalent
R5 strain, a baseline determination of  the predominant
tropism of  the circulating virus prior to treatment with
these drugs is advisable. Therefore, for clinical purpos-
es, the viral strains are classified as X4-users (classical
X4 and R5X4) or R5-users, only the latter being candi-
dates for a coreceptor blocker therapy.

IMPORTANCE OF ENV-V3 FOR THE PREDICTION
OF CORECEPTOR USAGE AND RESISTANCE TO

CCR5 BLOCKERS

The Env-CD4 interaction triggers a subsequent con-
formational change in the viral Env, which rearranges
its core and exposes the coreceptor binding site, a dis-
continuous epitope comprising the third hypervariable
loop of  the viral envelope gp120 protein (Env-V3),
the β-19 strand and the bridging sheet [25-29]. The
charge and structure of  the Env-V3 is the major de-
terminant for the specificity for the CCR5 or CXCR4
coreceptor while the bridging sheet provides the main
determinants the interaction with both coreceptors
[27]. In fact, some studies showed that replacement of
the Env-V3 loop from an R5 into an X4 virus can lead
to a coreceptor usage switch [29, 30]. 

Env-V3, the bridging sheet and both coreceptors are
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charged due to the presence of  basic amino acids (K or
R), acidic amino acids (D or E) and post-transcriptional
modifications (mainly N- or O-glycosilations or tyro-
sine sulfation). Therefore, electrostatic interactions are
greatly implicated in the efficacy and specificity of
coreceptor binding [31-35]. Indeed, mutations affecting
the Env-V3 charge or the overall net charge of  this re-
gion correlate with coreceptor selectivity [36-49]. R5
isolates usually show lower net Env-V3 charge than X4
variants [41-48, 50-53], which fits the observation that
CCR5 has a higher positive net charge than CXCR4.

On the other hand, some mutations not affecting
the charge of  the Env-V3 region were reported to be
important for coreceptor selectivity [36-40, 42, 54-57]
indicating that structural constrictions are also relevant
for the gp120-coreceptor interaction.

Several studies showed that resistance to the CCR5
inhibitors AD101 (or SCH-35081), SCH-D (Vicrivi-
roc) or Maraviroc (MVC) involves point mutations in
the Env-V3 region [58-61], similar to the appearance
of  antiretroviral resistance against HIV RT or PR,
where spe cific amino acid substitutions in the target
genes are required. In the case of  MVC resistance, the
alterations within Env-V3 permit the virus to recog-
nise the altered structure of  the drug-occupied CCR5
coreceptor [61, 62].

CORECEPTOR USAGE PREDICTION BASED ON
THE BIOINFORMATICAL ANALYSIS OF THE

VIRAL ENV-V3 SEQUENCE

The coreceptor which an HIV-1 strain can use for in-
fection of  a cell depends on the viral envelope-protein
gp120. The ability of  this protein to bind to a specific
coreceptor is the result of  conformational properties
and binding-energies between gp120 and the chemo -
kine receptors. The orientation and charge of  the in-
volved residues is defined by the viral genotype. Thus,
in the end, all the information needed for determina-
tion of  coreceptor usage of  a virus strain is encoded
in its genome. Hence, genotypic methods should in
principle be able to determine the phenotype from the
genotype. 

Certainly, current biophysical models for prediction
of  protein conformation and binding-energies are not
accurate enough for predicting tropism directly from
sequence. Therefore, genotypic methods predict core-
ceptor usage by correlating experimentally validated
genotype-phenotype pairs. This idea has already been
applied successfully in the realm of  HIV drug resis-
tance testing. There, sophisticated interpretation algo-
rithms are widely used in support of  treatment with
antiretrovirals by predicting response to drugs as well
as outcome of  combination therapies [63].

Such an approach has several benefits. While phe-
notypic assays are based on cell culture experiments
and are therefore relatively expensive and have rela-
tively slow turnaround, genotypic approaches are
much easier to perform and consequently cheaper,
faster and easier to standardize. In addition, surrogate
markers such as the patient’s CD4+ T-cell counts can
be incorporated into these methods and improve their
quality. Phenotypic assays cannot make use of  this in-
formation and simulate the state of  the patient’s im-

mune surveillance.
However, a problem of  genotypic approaches is

that the interpretation of  sequence data is challenging.
Statistical learning methods applied for this task are
rarely descriptive and it is often hard to understand
why a method classifies a sample to a certain pheno-
type. Moreover, although genotypic methods are con-
tinually improving and yield very good results on clon-
al data, their predictions are still not as accurate as
phenotypic assays, especially on clinical samples.

Another benefit of  genotypic methods is that they
can simulate and analyze the possible evolution of  the
virus. Similar to the commonly used concept of  the
“genetic barrier” in drug resistance, this can be used to
compute the number of  mutations a given virus se-
quence has to accumulate for switching its coreceptor.

Like phenotypic approaches, genotypic methods
have the limitation that they are not able to detect if  a
minor viral population of  X4-users is “hidden” in a
prevalent R5-user population.

CORECEPTOR USAGE PREDICTION TOOLS

Several methods have been developed for prediction
of  coreceptor usage. Since Env-V3 is known to be the
major determinant of  coreceptor tropism and due to
the lack of  sufficient data for other regions, all current
methods focus on it. 

A simple but popular approach is the classical
11/25 rule [44, 45, 64, 65]. It predicts a virus to be
X4-user if  basic amino acids (arginine or lysine) are
present at positions 11 or 25 of  Env-V3 and R5-user
if  no basic amino acids are to be found within these
positions. This rule is quite accurate for R5-users but
misclassifies many X4-users [66]. 

The lack of  high sensitivity to detect X4-usage has
led to the development of  more complex methods
aiming at improving the true positive rate. These
methods combine the amino acid composition with
the overall net charge of  Env-V3 [41, 47, 66]. 

Further advancements could be achieved by using
more sophisticated statistical learning methods.
Among these, different decision tree classifiers [67, 68]
and artificial neural networks [69] were the first ones
reported. Both approaches can handle larger parame-
ters sets than simple motif  methods and usually em-
ploy the amino acid composition and the charge of
the Env-V3 loop as explanatory variables. Alternative-
ly suggested methods include support vector machines
(SVMs) [56, 68], position specific scoring matrices
(PSSMs) [66], and mixtures of  localized rules [56]. 

Recent progress has been made by incorporating
the structure of  the V3 loop into prediction engines.
Sander et al. developed a distance-based descriptor of
the spatial arrangement of  physiochemical properties
that was taken as input to a SVM [57]. In comparison
with a purely sequence-based SVM, they could show
that the inclusion of  structural features improved
coreceptor usage significantly.

Although a number of  prediction methods have
been developed so far, only a few of  them are avail-
able as web-services: WetCat, WebPSSM, and geno2 -
pheno[co r e c ep t o r ] . To use these tools, nucleotide or amino
acid sequences of  the Env-V3 region in FASTA for-
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mat are sent to the server as input for predictions.
WetCat is a web-service developed and maintained

at the University of  California, San Diego. It imple-
ments the charge rule, three different decision trees,
and support vector machines [68]. The sequences have
to be manually translated into amino acids, excised so
that exclusively the Env-V3 region is included, and
aligned to a consensus sequence described on the web-
site, which is very time-consuming. Especially the
manual alignment to the reference is very error prone.
As a result of  a prediction run, a page is displayed
showing the predicted phenotype for each sequence.

A benefit of  WetCat is that it allows batch predic-
tions in a single run. However, the very restricted for-
mat is not user friendly and additional tools for se-
quence preparation would be helpful. Furthermore, a
limitation of  this tool is that the different prediction
models are still trained on the original dataset contain-
ing only 271 sequences. An update of  the models with
new data would probably improve this tool.

WEBPSSM

The WebPSSM server predicts coreceptor usage from
Env-V3 sequences given in amino acidic FASTA for-
mat with position specific scoring matrices developed
in [66]. Alignment of  the samples with the consensus
sequence is automatically done by the server which
uses the Needleman-Wunsch algorithm and an amino
acid distance matrix to align them before scoring.

The user can choose among three different predic-
tion matrices: two subtype B and one subtype C 
matrix. One of  the subtype B models is trained on 
sequences of  known coreceptor phenotype, whereas
the other one is generated from sequences with
known syncytium-inducing phenotype on the MT2
cell line. For subtype C, only a matrix trained on se-
quences of  known syncytium-inducing phenotype is
provided.

WebPSSM not only predicts whether a virus can use
the CXCR4 coreceptor or not, but also gives addition-
al information of  the predictions. It displays a quanti-
tative value, the prediction score, as well as percentile
scores describing the certainty and trustiness of  the
calculated predictions. Furthermore, the amino acids
at positions 11 and 25 are shown in order to facilitate
a comparison with the 11/25 rule. Finally, the number
of  positively charged amino acids in the Env-V3 loop
and its net charge are displayed together with a mea-
sure reflecting the probability of  being an Env-V3 se-
quence.

An advantage of  the server is that it accepts as
many as 100 Env-V3 sequences and aligns them au-
tonomously. In addition, the possibility of  download-
ing results in tab-delimited format allows for easy
post-processing.

A deficit of  the system is that only subtype B and C
matrices are offered. In principle, these matrices can
also be used to predict samples from other subtypes
but such predictions should be treated with extreme
scepticism. Furthermore, it is not clear on which data -
set the matrices have been trained on and if  they have
been updated since their initial generation. Because sta-
tistical learning methods improve with larger amounts

of  data, this information would be quite useful.
GENO2PHENO[CORECEPTOR]

Geno2pheno[coreceptor] predictions are based on support
vector machines [70]. Predictions can be performed
from fasta-formatted nucleotide or amino acid se-
quences containing the Env-V3 region. The sequences
can be pasted into a text field or uploaded from a file. 

If  required, the server allows configuration to dif-
ferent users requirements by varying the settings for
significance levels. 

The version 2.0 of  geno2pheno[coreceptor] can make
use of  additional clinical parameters. If  such markers
are provided, the server returns two predictions: i) a
prediction by the standard model trained on clonal data
ii) a prediction by a model trained on data including
clinical markers from 1000 therapy-naïve patients.

Geno2pheno[coreceptor] generates an output page di-
vided into four parts. The first two parts display gen-
eral overview information and the provided clinical
markers. In the third section, an alignment of  the
query sequence to the standard reference HXB2 is
provided. The N-glycosylation motif  and positions 11
and 25, all known to be significant for CXCR4-use are
highlighted and coloured. The last part contains the
predicted phenotype and, similar to WebPSSM, a p-
value assessing the confidence of  a prediction. For
better understanding, the prediction field is shown
with a green background in case of  a predicted R5-
virus, otherwise in red. If  additional clinical parame-
ters have been sent to the server, a second similar row
with the results of  the clinical model is displayed.

Geno2pheno[coreceptor] is not restricted to a specific
subtype. Although most of  its training sequences are
from subtype B viruses, other subtypes have been in-
cluded in the training process, as well. 

QUALITY ASSESSMENT

The performance of  the different web-services is hard
to determine and to compare for several reasons. First
of  all, one cannot directly compare the performances
in the respective publications because they were calcu-
lated on different datasets and different measures were
used for evaluation. Second, the different authors had
different demands on the quality of  the data. For ex-
ample, in the validation of  the WetCat-models, all se-
quences shorter than 34 or longer than 36 residues
were simply discarded. Of  course, this has a high in-
fluence on the performance. However, the main rea-
son for the difficulty in comparing the servers is the
lack of  data. A fair evaluation must ideally be based on
an independent dataset with sequences not used for
training of  any method. The problem at this point is
that all three different web-services have been trained
on different subsets of  the Los Alamos Sequence
Database. Therefore, one cannot simply evaluate the
predictions on all sequences in the database. Other re-
sources with genotype-phenotype information not in-
cluded in the Los Alamos database are sparse and
most of  them include only a small number of  samples.
Thus, statistically significant results cannot be inferred
from these experiments.

An attempt for a fair evaluation has been made for
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the development of  geno2pheno[coreceptor]. For this
evaluation, all sequences with experimentally deter-
mined coreceptor-usage were downloaded from the Los
Alamos Sequence Database. Different methods, in-
cluding the 11/25 rule, decision trees, position specific
scoring matrices, and support vector machines were
implemented according to the publications in which
they were proposed. In ten replicates of  10-fold cross-
validation experiments, each method was evaluated on
this dataset. The 11/25 rule yielded a sensitivity of
59.5% in detecting X4-using variants and a mean speci-
ficity of  92.5%. Decision trees, neural networks, mix-
tures of  localized rules or simple modifications of  the
charge rule led to minor improvements (sensitivity of
about 62.5%) at the corresponding specificity. Both
PSSMs and SVMs, outperformed all other methods
and significantly improved sensitivity by 12.4 and 16.9
percentage points, respectively. Since the SVMs
showed slightly better results than PSSMs, they have
been chosen as the method of  choice in geno2 -
pheno[coreceptor]. It has to be emphasized that this evalu-
ation only compared the different methods used in the
web servers and not the different web-services them-
selves, because these have been trained on different
datasets. The real performance of  the systems is main-
ly based on the number and the quality of  their train-
ing sets.

The results of  this evaluation are based on clonal
data. The reliability of  all methods decreases when us-
ing clinically derived samples. These are generated

with population-based “bulk” sequencing technolo-
gies and contain mixtures of  co-existing viral variants.
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Fig. 1. A Geno2pheno[coreceptor] output page. The output is divided in three sections. Section 1: sample general information.
Section 2:  alignement of the sample sequence with the consensus HXB2. Section 3: CXCR4 usage prediction. In this example,
CXCR4 usage is predicted and therefore CCR5 coreceptor blockers should not be administrated. 

Fig. 2. Predictive performance of the 11/25 rule and five sta-
tistical learning methods (DT: decision trees, MLR: mixtures
of localized rules, ANN: artificial neural networks, PSSM: Po-
sition Specific Scoring Matrices, SVM: Support Vector Ma-
chines), assessed on clonal data (from [70]).



The fact, that these variants cannot be properly dis-
criminated from each other makes predictions more
problematic. In a recent study on 952 plasma samples
from antiretroviral-naïve patients, the three web-ser-
vices have been evaluated [71]. The performances of
all tested methods and the 11/25-rule decreased sig-
nificantly. While the 11/25-rule’s specificity of  93.4%
was similar to results obtained on clonal data, sensitiv-
ity dropped to 30.5%. The performance of  the SVM-
models of  WetCat were even worse as they only
reached a sensitivity of  22% with a specificity of
90%. In comparison, WebPSSM and the SVM-models
of  geno2pheno performed much better but their per-
formances also decreased substantially. They showed
sensitivity values of  about 50% at the 90% specificity-
level [71].

OTHER FACTORS OF IMPROVING PREDICTION
EFFICACY

STRUCTURAL INFORMATION

Current genotypic methods for tropism prediction
use only sequence information. They do not consider
the three-dimensional structure of  the Env-V3 loop,
although its conformational properties have been dis-
cussed in several studies [27, 72-74]. The deeper un-
derstanding of  the interactions between the viral en-
velope protein and the cellular coreceptors would re-
duce the need for sequence data and simplify the de-
sign of  new drugs. The reason for the current lack of
structural predictors is that only a few NMR-struc-
tures existed until recently. Lately, the first crystal
structure was published [75] and based on this, the
first structural bioinformatics method for prediction
of  coreceptor usage was developed [57]. The work
showed that the inclusion of  structural information
can improve predictive performance of  existing meth-
ods.

Although these results are very encouraging, a lot of
space for improvements still remains. One limitation
of  the published model is that the backbone of  the
loop is held fixed. Relaxing this restriction and incor-
porating coreceptor structures in the analysis are only
two points of  possible improvements. These points

can be addressed as soon as more reliable crystal
structures are published. 

OTHER GP120 REGIONS

Both CCR5 and CXCR4 coreceptors interact with the
same region of  the viral Env. This region encompasses
not only the Env-V3 loop but also the β-19 strand and
the bridging sheet, a four-stranded antiparallel b-sheet
encompassing β-2 and β-3 strands from the V1/V2
stem and the b-20 and b-21 strands within the C4 re-
gion [25-29]. Indeed, mutations in these regions have
been shown to directly influence coreceptor usage [76-
83]. 

Currently available methods do not consider other
gp120-regions mainly because of  lacking data. Since
the Env-V3 sequence is assumed to be the major de-
terminant of  coreceptor usage and since it is more
complicated to amplify and sequence larger fragments
of  gp120, most existing data are restricted to Env-V3.
However, as new more powerful sequencing tech-
niques are developed and the involvement of  other
Env-regions in coreceptor-tropism and resistance to
coreceptor-antagonist becomes more obvious, more
and more data containing larger regions of  gp120 are
being expected. Along with these, the prediction
methods will probably be improved and adjusted.

PATIENT CLINICAL FACTORS

The detection of  X4 using strains correlates with a de-
crease in the CD4+-T-cell counts under 200 cells/ml
[4, 21, 84]. It is not clear if  the appearance of  X4
strains is a consequence of  immune system exhaustion
and elimination of  X4 emergence inhibitors, or vice
versa, the appearance of  X4 viruses is the origin of
massive CD4+-T-cell depletion and is the cause for a
faster disease progression. Regardless of  which direc-
tion holds, different patient clinical factors can be in-
corporated into the prediction methods, and support
them, as shown in a recent study [70]. Plasmatic viral
sequences, different clinical markers (including plasma
viral load, CD4+- and CD8+-T-cell counts, and the
percentage of  CD4+-T-cells at time of  sampling), and
the patients’ genotype for the 32-base pair deletion re-
sulting in non-functional CCR5-coreceptors from 979
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Fig. 3. Three dimensional structure
of the HIV-1 Env protein . Structural
informations improved the power of
the predictions significantly [57].



antiretroviral-naïve patients were analysed using a sup-
port vector machine. Compared with a purely se-
quence-based SVM, the model including the clinical
markers performed significantly better.

However, since the observations are from therapy-
naïve patients, future studies have to check whether
these markers can also be used for therapy-experi-
enced patients. In addition, other clinical markers that
may improve predictions (e.g. therapy history) should
also be analyzed.
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