GERMAN-AUSTRIAN RECOMMENDATIONS FOR HIV-THERAPY IN PREGNANCY - UPDATE MAY 2003

COMMON DECLARATION*

of

The German AIDS-society (DAIG)
The Austrian AIDS-society (OEAG)
The HIV-AIDS competence network

as well as

The Robert-Koch Institute Berlin (RKI)
The German Association of Physicians specialized in HIV Care (DAGNAE)
The German Society of Pediatric and Youth Medicine (DGKJ)
The German AIDS Pediatric Association (PAAD)
The German Society of Obstetrics and Gynecology (DGGG)
The National Reference Center for Retroviruses (NRZ)
German AIDS Assistance (DAH)

Updated by Dr. med. Bernd Buchholz (Mannheim University Pediatric Clinic), Dr. med. Thomas Grubert (Gynecology, Clinic of the Ludwig Maximilians University of Munich), Dr. med. Ulrich Marcus (Robert Koch Institute, Berlin), Dr. med. Matthias Beichert (Mannheim, Gynecology and Obstetrics Practice), Dr. med. Andrea Gingelmaier (Gynecology, Clinic of the Ludwig Maximilians University of Munich) and Prof. Dr. med. Norbert H. Brockmeyer (Clinic for Dermatology, Ruhr University, Bochum).

* The following recommendations were prepared on the occasion of a consensus building conference in Hamburg on May 14th 2003.
The participants at this conference included (in alphabetical order):
Arasteh K (Berlin), Beichert M (Mannheim), Bergmann F (Berlin), Brockmeyer NH (Bochum), Buchholz B (Mannheim), Casteleyn S (Berlin), Engelhorn C (München), Diedrich K (Lübeck), Faul-Burbes C (Frankfurt), Friese K (München), Funke A-M (Köln), Gingelmaier A (München), Götz J (Berlin), Grüger S (Hamburg), Grosch-Wörner I (Berlin), Grubert T (München), Gute P (Frankfurt), Haberl A (Frankfurt), Hien S (Mannheim), Helm M (Nürnberg), Hollwitz B (Hannover), Hoffmann F (München), Hower M (Bochum), Jaeger H (München), Kästner R (München), Karcher H (Berlin), Knechten H (Aachen), Korn K (Erlangen), Kremer H (Bielefeld), Riegel S (München), Marcus U (Berlin), Nothes G (München), Nsimegne S (Berlin), Pecha A (Frankfurt), Plettenberg A (Hamburg), Puch K (Berlin), Reimann G (Bochum), Schafferger A (Berlin), Scheer I (München), Schlottmann R (Bochum), Schmied B (Wien), Sonnenberg-Schwan U (München), Vocks-Hauk M (Berlin), Weigel M (Mannheim), Weitner L (Hamburg)
Abstract:
German-Austrian recommendations for HIV-therapy in pregnancy - Update May 2003
Bernd Buchholz (Mannheim University Pediatric Clinic), Thomas Grubert (Gynecology, Clinic of the Ludwig Maximilians University of Munich), Ulrich Marcus (Robert Koch Institute, Berlin), Matthias Beichert (Mannheim, Gynecology and Obstetrics Practice), Andrea Gingelmaier (Gynecology, Clinic of the Ludwig Maximilians University of Munich), Norbert Broekmeyer (Clinic for Dermatology, Ruhr University, Bochum).

In Germany during the past years about 200-250 HIV infected pregnant women delivered a baby per year, a number that is currently increasing. To deter- mine the HIV-status early in pregnancy voluntary HIV-testing of all pregnant women is recommended in Germany and Austria as part of prenatal care. In those cases, where HIV infection was known during pregn- any, since 1995 the rate of vertical transmission of HIV was reduced to 1-2%.

This low transmission rate has been achieved by the combination of anti-retroviral treatment of pregnant women, elective caesarean section before onset of labor, anti-retroviral post exposition prophylaxis in the newborn and reanating from breast-feeding by the HIV infected mother. To keep pace with new results in research, approval of new anti-retroviral drugs and changes in the general treatment recommendations for HIV infected adults, in 1998 and 2001 an interdiscipli- nary consensus meeting was held. Gynecologists, infectious disease specialists, pediatricians, pharmacologists, virologists and members of the German AIDS Hilfe (NGO) were participating in this conference to update the prevention strategies. A third update be- came necessary in 2003. The updating process was started in January 2003 and was terminated in July 2003. The guidelines provide new recommendations on the indication and the starting point for HIV-therapy in pregnancies without complications, drugs and drug combinations to be used preferably in these preg- nancies and updated information on adverse effects of anti-retroviral drugs. Also the procedures for different scenarios and risk constellations in pregnancy have been specified again.

With these current guidelines in Germany and Aus- tria the low rate of vertical HIV-transmission should be further maintained or even further lowered.

Key words: Pregnancy; HIV-therapy; HIV-status; HIV-testing; anti-retroviral drugs; recommendations

INTRODUCTION

The German-Austrian recommendations for HIV therapy in pregnancy reflect the current international knowledge and the experience of German clinical set- tings specialized in the treatment of HIV-positive pregnant women.

Even though all constellations, scenarios and contingencies of a pregnancy can not be consid- ered within the scope of these recommendations, they are designed as scientifically-based guide- lines. The most important and most frequent questions and problems which doctors, who treat HIV positive expectant mothers are facing, irrespective of whether they are experienced in the care for such pregnancies or not, are covered in these guidelines.

Therapeutic recommendations can never re- place extensive experience with patients and their specific problems. Therefore antenatal care of HIV positive expectant mothers, considering the many uncertainties associated with pregnancy, should be performed in - or in cooperation with specialized centers.

All measures necessary for the prevention of verti- cal HIV transmission can only be employed, if the HIV infection status of the expectant mother is known. Risk factors for an HIV-infection such as ori- gin from a an HIV epidemic region, current or previ- ous intravenous drug abuse or sexual intercourse with an HIV-infected partner, can not always be identified amongst all pregnant HIV-infected individuals. For that reason an HIV antibody test should be offered to every pregnant woman together with competent per- sonal counseling in regard to possible consequences in the case of a positive test result. If necessary this must be carried out with a translator and cultural mediation, even if the patient needs to be referred to a specialized center for this purpose. By German law the explicit approval of the pregnant mother is required for HIV- testing, which routinely consists of an ELISA screen- ing test. A positive test result must be confirmed by Western Blot [1, 2]. If the patient is counseled by her gynecologist alone, addresses and telephone numbers of additional experts should be made available to the expectant mother. The personal and medical conse- quences of any positive test results for the woman should also be discussed in the counseling. Further- more a competent pediatrician should contribute to the counseling about transmission risks, follow-up tests and the course of an HIV infection in a child.

As with many other problems in pregnancy, the welfare of the child must be weighed up against that of the mother when deciding for therapeutic/prophylactic measures against HIV.

The goals of interdisciplinary co-operation between general practitioners, obstetricians and pediatricians in the treatment of HIV-infected expectant mothers and HIV-exposed newborns are: 1) the prevention of mother to child transmission, and 2) the optimal treat- ment of the pregnant women combined with minimal adverse effects in the expectant mothers and the un- born child.

Mothers with a high viral load and/or low T-helper cell count transmit HIV more frequently to their chil- dren [3, 4, 5], therefore successful therapy of the mother is also beneficial for the child. Risks for the child that might arise from intrauterine exposure to anti-retroviral combination therapies are still uncertain since data regarding pharmacokinetics, pharmacody- namics, embroyotoxicity and fetotoxicity of these drugs are lacking [6, 7, 8, 9, 10, 11, 12]. The vertical trans- mission rate without any intervention is approximately 16%, therefore it should also be considered that 84 % of the children are treated unnecessarily to reach a HIV-transmission rate of <2%. Up to now no reliable
prognostic factors are known to select the pregnancies at greatest risk for HIV-transmission. From a pediatric standpoint this point was already discussed with concern back in 1995 [13].

Basic and clinical research data suggest multiple risk factors which contribute to vertical HIV-transmission [3, 4, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. Combined interventions as described in the following chapters are able to reduce the HIV-transmission rate below 2% [16, 26, 27, 28].

The recommendations for diagnostic and therapeutic procedures given here are based on published study results wherever these were available. Such study results, however, are not available for all practical problems and questions, so that often clinical experience and expert opinion must be resorted to.

Even if the goal of these recommendations is the optimal treatment of mother and child based on the most recent findings, it should be stressed that the decision for the recommended diagnostic and therapeutic measures ultimately must be made by the expectant mother. This means that the refusal of a recommended diagnostic and/or therapeutic measure must be respected wherever the consent of an expectant mother cannot be obtained despite adequate counseling.

After a detailed analysis of data and publications, a number of procedures were developed for specific situations. Most common situations and scenarios were considered. For all other situations however, individual decisions on a case-by-case basis are necessary.

The following situations were discussed and consensus recommendations were made:

1. Prenatal care
2. Indication for treatment and therapeutic regimens during pregnancy
 2.1 Indication for treatment
 2.2 Resistance testing
 2.3 Initial therapeutic regimen
 2.4 Interruption of anti-retroviral therapy during the 1st trimester of the pregnancy
3. HIV transmission prophylaxis with standard risk profile
4. Risk-adapted transmission prophylaxis
 4.1 Multiple pregnancy, premature labor, premature infants 33\(^{rd}\) (+0) - 36\(^{th}\) (+6) GW and duration of maternal ART/prophylaxis <4 weeks before birth
 4.2 Amnion infection syndrome/amnionitis, (premature) rupture of membranes > 4 h, premature birth < 33\(^{rd}\) (+ 0) GW and viral load increase at the end of pregnancy > 10 000 HIV copies/ml
 4.3 Incision injury of the child, aspiration and/or ingestion of blood contaminated amniotic fluid
5. Procedures with incomplete transmission prophylaxis
 5.1 With verified HIV-infection
 5.2 Situations with unclear HIV infection status
6. Mode of delivery
7. Postnatal care of the newborn in the delivery room
8. Postnatal treatment of the child
9. Refraining from breast-feeding
10. Postnatal care of the child
11. Phone-Hotline, notification of unexpected observations and experiences

The recommendations were graded as outlined in the German-Austrian guidelines for the anti-retroviral Therapy of HIV infection [29]. Unless the results of voting are indicated, the recommendation was agreed upon unanimously.

1. Prenatal care

Upon diagnosis of HIV in a pregnant woman, an interdisciplinary center specialized in HIV care should be contacted immediately. From that point onwards the woman should be treated in close cooperation with the gynecologist familiar to the pregnant woman. The gynecologist, who usually treats the woman, is primarily recommended to carry out the conventional prenatal

Grading of the therapeutic recommendations.

<table>
<thead>
<tr>
<th>I</th>
<th>On the basis of at least one randomized study with clinical end points *</th>
<th>II</th>
<th>On the basis of surrogate marker studies</th>
<th>III</th>
<th>According to expert opinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Unambiguous recommendation</td>
<td>A I</td>
<td>A II</td>
<td>A III</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>In general advisable</td>
<td>B I</td>
<td>B II</td>
<td>B III</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Justifiable</td>
<td>C I</td>
<td>C II</td>
<td>C III</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>In general not recommended</td>
<td>D I</td>
<td>D II</td>
<td>D III</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Unambiguously not recommended</td>
<td>E I</td>
<td>E II</td>
<td>E III</td>
<td></td>
</tr>
</tbody>
</table>

Clinical end point studies for new substances are no longer carried out due to the fact that conditions for licensing by the FDA and the EMEA have changed.
care for HIV-positive pregnant women, according to current antenatal care guidelines, to preserve the bond with the patient’s familiar environment. Any other additional care measures should also be fitted in this setting. With the help of a well-planned time scheduling a closely-knit monitoring can be ensured.

Psychosocial care should be provided to each HIV-positive expectant mother, at the latest in the HIV-specialized centers, and the opportunity to contact women’s AIDS self-help groups should also be offered. The patients should be fully counseled in the HIV-specialized centers regarding maternalfetal transmission risks, current therapeutic options, the possibility to reduce mother-to-child HIV transmission rates, existing residual risks, potential short- and long-term effects of intrauterine exposure to anti-retroviral therapy for the child as well as the necessity of postpartum prophylaxis in the child and avoiding of breastfeeding [30, 31, 32]. Considering the rapidly developing state of knowledge regarding HIV, up to date information is only warranted in such specialized centers. To overcome any language barriers the help of translators should be obtained whenever necessary to ensure that all the information effectively reach the patients.

In cooperation between the general practitioner, the gynecologist, the obstetrician, the pediatrician and the patient, an individual risk-adapted anti-retroviral treatment or prophylaxis concept corresponding to the current German-Austrian guidelines for HIV-therapy in pregnancy should be set up. The general practitioner/infectious disease specialist should be consulted to adapt this therapeutic plan to ongoing therapies or prophylaxes against opportunistic infections. A switching of the treatment regime during pregnancy or the initiation of new therapeutic measures should only be undertaken upon consultation with a physician or center specialized in anti-retroviral therapy.

In the case of therapy-refractory morning sickness/emesis gravidarum, all anti-retroviral medications should be stopped simultaneously (NNRTI wherever appropriate in a staggered manner a few days previously) and reintroduced simultaneously if the symptoms start to improve again in order to prevent the development of resistance to anti-retroviral drugs (AIII).

Concurrently with the therapy, a monthly monitoring of blood counts is also recommended (AIII). Changes in blood counts are particularly important because of the possibility of zidovudine-induced anemia and thrombocytopenia. If the hemoglobin-values drop to less than 10mg/dl in the expectant mother, it must be decided in close cooperation with the HIV-specialist whether waiting with closely-knit controls is possible or if the anti-retroviral regimen must be changed.

An oral glucose tolerance test is recommended between the 23rd (+0) and 27th (+7) weeks of gestation (GW) to screen for pregnancy-related diabetes, particularly if the expectant mother is treated with protease inhibitors (under protease inhibitor therapy, diabetes mellitus occurs approximately three times more frequently)[33] (AIII). Measurements of blood lactate, liver enzymes, amylase, lipase and LDH should be performed at the beginning of pregnancy, after starting a therapy or prophylaxis, with suspicious clinical symptoms (signs of lactate acidosis such as nausea, severe vomiting, abdominal pain, fatigue, raised liver values), and particularly in the 3rd trimester because of the increased risk of lactate acidosis at the end of pregnancy (AIII).

Immunological and virological parameters (lymphocyte subsets, HIV viral load) should be checked at least bimonthly (AIII).

The expectant mother should be informed about any possible side effects and symptoms of the anti-retroviral therapy and should also be requested to inform her general practitioner immediately of any suspicious complaints [34, 35, 36]. Furthermore, she should also be requested to consult her general practitioner before taking any other prescribed or OTC medications during the pregnancy because of potential interactions with the anti-retroviral therapy (e.g. benzodiazepines).

A comprehensive diagnostic evaluation and therapy for genital infections is also important. Local co-infections such as chlamydia, trichomoniasis and bacterial vaginosis amongst others correlate with higher HIV transmission risks, especially due to potential induction of premature labor [24]. The following examinations are obligatory: determination of vaginal secretion pH; sampling of a native preparation and microbiological culturing; STD diagnostics; toxoplasmosis screening at the start of therapy and in the second and third trimesters to exclude a reactivation and/or new infection at the end of the pregnancy; a complete hepatitis serology. Urinary tract infections should be excluded e.g. by Uricult examinations.

Up to 30 % of HIV-infected women display vulvar, vaginal and cervical dysplasia, which can progress more rapidly to carcinoma as a result of the HIV-induced immune suppression [37]. For this reason a colposcopic examination should be carried out at the onset of pregnancy in addition to pap smear testing of the cervix. If the colposcopic examination is normal, the next control examination can be scheduled in a postnatal appointment. Any abnormalities must be controlled colposcopically and if necessary histologically (AIII: for 12, against 3, abstentions 8). The perianal region should be examined in addition to the vulva, vagina and cervix, as also recommended for non-pregnant HIV-infected women.

For all HIV-infected expectant mothers nuchal translucency should be measured between the 10th (+6) and 13th (+6) weeks of gestation to estimate risks of aneuploidy. Fetal sonography (at least DEGUM stage 2) should be carried out between the 19th (+6) and 22nd (+6) weeks of gestation to screen for fetal malformations.

Invasive prenatal diagnostics should be avoided whenever possible. If there is an urgent indication, it should be performed with consideration of viral load and only under the protection of anti-retroviral therapy/prophylaxis because of the risk of contamination of the amniotic fluid (AIII).

If the HIV-status of the mother is unknown and invasive prenatal diagnostic is indicated, an HIV-test should be offered again.
<table>
<thead>
<tr>
<th>Diagnostic measure</th>
<th>Timepoint/ frequency</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV screening and if necessary HIV confirmative test</td>
<td>- routinely in the 1st trimester in case of unknown HIV-status;
- at the start of the 3rd trimester after negative initial test but continuing risk of infection</td>
<td>Precondition for prophylactic and therapeutic measures to reduce the risk of HIV-transmission</td>
</tr>
<tr>
<td>CD4 cell count + viral load</td>
<td>At least every two months</td>
<td>Monitoring the course of the HIV infection; Initiation of ART or switchover of ART in case of therapeutic failure. Control of the efficacy of the (HA)ART to prevent a high HIV viral load at birth</td>
</tr>
<tr>
<td>HIV resistance test</td>
<td>1. As early as possible before the onset of prophylaxis
2. In case of virological therapy failure during an ART
3. With detectable viral load towards the end of an HIV prophylaxis
4. 2-6 weeks after application of a prepartal NVP ultra-short prophylaxis</td>
<td>1. Exclusion of a primary ZDV resistance [38, 39, 40, 41]
2. According to general therapeutic recommendations for optimizing a therapeutic switchover [29]
3. Registration of any possible resistance induction that might have implications for a future therapy [42]
4. Registration of a potential resistance induction [43, 44]</td>
</tr>
<tr>
<td>Blood count (Hemoglobin value)</td>
<td>Monthly</td>
<td>Detection of anemia, thrombopenia related to the use of ZDV in particular</td>
</tr>
<tr>
<td>Oral glucose tolerance test</td>
<td>Between 23rd (+0) and 27th (+6) week of gestation</td>
<td>Detection of gestation diabetes</td>
</tr>
<tr>
<td>Lactate level + liver values + GT + LDH + amylase + lipase</td>
<td>1. At the start of pregnancy
2. After onset of therapy/prophylaxis
3. In case of clinical symptoms
4. Monthly in the third trimester</td>
<td>Recommended for detecting lactic acidosis (raised incidence in the 3rd trimester). Discussion of raised lactate and other values in cooperation with clinicians experienced in carrying out and analyzing lactate measurements.</td>
</tr>
<tr>
<td>pH measurement in the vaginal secretion</td>
<td></td>
<td>Recognition and timely treatment of local co-infections that can increase the risk of HIV transmission</td>
</tr>
<tr>
<td>Native preparation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiological culture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD-diagnostics: Chlamydia, gonorrhea, trichomonas, syphilis- and hepatitis serology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toxoplasmosis screening</td>
<td>At the start of a pregnancy as well as in the 2nd and 3rd trimester</td>
<td>For the diagnosis of a new infection or of a toxoplasmosis reactivation</td>
</tr>
<tr>
<td>Colposcopy, cytological controls for vulvar, vaginal and cervical dysplasias</td>
<td>Colposcopy and cytological examination at the start of a pregnancy; If abnormalities are revealed, colposcopic controls and wherever necessary histological clarification (biopsy)</td>
<td>Increased risk of dysplasia with HIV infection [37]</td>
</tr>
<tr>
<td>Measurement of nuchal translucency</td>
<td>10th (+6) - 13th (+6) week of gestation</td>
<td>Estimation of the risk of aneuploidy</td>
</tr>
<tr>
<td>Sonography, at least DEGUM stage 2</td>
<td>19th (+6) - 22nd (+6) week of gestation</td>
<td>Exclusion of malformations</td>
</tr>
</tbody>
</table>
2. INDICATION FOR TREATMENT AND THERAPEUTIC REGIMENS DURING PREGNANCY

2.1 INDICATION FOR TREATMENT

Treatment indications [29] for adult HIV patients also apply to pregnant women (but check 3.1b!!), i.e. in clinically asymptomatic women the immunological threshold for treatment is reached at a CD4+ cell count between 200 and 350 CD4+ cells/mm³. It should be noted here that a certain degree of immunosuppression is induced physiologically by a pregnancy [20, 47] so that the CD4-values drop by around 10-20% during every pregnancy. In an HIV infected women this effect may be even more pronounced (up to 40 %) (AIII).

2.2 RESISTANCE TESTING

In order to ensure the efficacy of anti-retroviral prophylaxis/therapy during pregnancy, testing for pre-existing resistance is generally indicated for every treatment naive pregnant woman before the start of therapy or prophylaxis [38, 39] (AIII).

For women who become pregnant during anti-retroviral treatment, German-Austrian guidelines for HIV therapy in adults recommend resistance testing (AIII) whenever a virological treatment failure is diagnosed.

If at the end of anti-retroviral HIV transmission prophylaxis (determined just before or directly at the time of birth) viral load is detectable in pregnant women, resistance testing should also be performed in order to document the eventual development of resistance under prophylaxis so that this can be taken into account if the woman requires therapy at some later time-point [41] (AIII).

If nevirapine ultra-short prophylaxis (single maternal dose immediately before birth) is given, resistance testing should be carried out 2-6 weeks after the anti-retroviral medication was stopped (see points 4 and 5) in order to determine whether resistance against nevirapine has been induced.

2.3. INITIAL THERAPEUTIC REGIMEN

Apart from the inhibition of viral replication in the mother, a major objective of an optimized initial therapeutic regimen during pregnancy is to combine an effective prophylaxis against HIV-transmission with the highest possible degree of compatibility for the mother and fetus.

A standard therapeutic regimen (usually a triple combination including either one – if necessary boosted - protease-inhibitor, or one NNRTI, but not efavirenz [4] due to the report of cerebral malformations in the newborns of efavirenz-treated pregnant monkeys [45]) is recommended as an initial maternal therapeutic regimen (AI,II). In addition, nucleoside analogues of particularly high mitochondrial toxicity (i.e. dideoxycytidine (ddC), stavudine (D4T) and didanosine (DDI)) should not be given in combination with one another wherever possible because of the raised risk of a potentially fatal lactate acidosis in the expectant mothers [46] (AIII).

It has to be considered that with the exception of zidovudine, no anti-retroviral drug has been approved for therapy during pregnancy and that the limited experience until now has not permitted any definitive evaluation of the risks and benefits. When choosing anti-retroviral drugs one must also keep in mind that their pharmacokinetics can be altered during pregnancy [48, 49, 50].

<table>
<thead>
<tr>
<th>Initial combinations and substances</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleoside analogs for which most experience has been gained</td>
<td>Zidovudine + Lamivudine, (also as Combivir®) Zidovudine + Didanosine</td>
</tr>
<tr>
<td>Alternatives</td>
<td>Stavudine + Lamivudine, Didanosine + Lamivudine Abacavir</td>
</tr>
<tr>
<td>NNRTI</td>
<td>Nevirapine</td>
</tr>
</tbody>
</table>
2.4. INTERRUPTION OF ANTI-RETROVIRAL THERAPY DURING THE 1ST TRIMESTER OF THE PREGNANCY

The decision to interrupt maternal anti-retroviral therapy in the 1st trimester of pregnancy depends on the individual clinical, immunological and virological status of the pregnant woman as well as the anti-retroviral treatment history. If the patient was clinically symptomatic before the start of anti-retroviral therapy, or if immunological and/or virological parameters showed an advanced state of immune deficiency and/or a very high risk for rapid disease progression, interruption of therapy is fraught with greater risks for the pregnant women than it is for a clinically asymptomatic woman, whose laboratory parameters might justify the start of an anti-retroviral therapy, but whose clinical status is stable and whose laboratory parameters are no cause for major immediate concern.

Vertical HIV-transmission occurs very rarely during the first 12 weeks of pregnancy, and is most common at the end of pregnancy and during birth. Therefore an effective HIV-transmission prophylaxis does not require anti-retroviral therapy during the entire pregnancy. Since currently adverse effects (especially during the phase of organogenesis) can not be excluded, particularly with application during the first trimester, an at most 3 month interruption of maternal anti-retroviral therapy should be taken into consideration. The decision to interrupt anti-retroviral therapy in the first trimester of pregnancy should be made individually and according to individual risk profiles with the informed consent of the mother. If therapy is interrupted, monitoring intervals should be short (at least monthly measurement of T-helper cell count and of viral load) (AII,III).

Up to now, no results of controlled trials have been published regarding the risks associated with interruption of anti-retroviral therapy during pregnancy, and inadequate data exist to allow any estimation of the risk that anti-retroviral combination therapy during the 1st pregnancy trimester entails for the child [12, 57].

From an embryo-toxicological standpoint, no drugs with unclear human teratogenic potential should be applied in the first trimester until the 11th completed week of gestation (±0, after the last regular menstruation) due to their potential effects on organogenesis [58, 59, 60].

If a decision is made in favor of therapy interruption, all anti-retroviral medications should be ceased (medications with a long half-life such as efavirenz and nevirapine should be ceased one week earlier). The anti-retroviral treatment should not be resumed before the 12th (+0) gestation week in order to take uncertainties of the exact time of conception into account.

If the woman under anti-retroviral therapy has planned for a child, a pregnancy test (HCG) should be undertaken very early on. The pregnancy test becomes positive 6-8 days after conception, thus a decision to interrupt anti-retroviral therapy can be accurately in time.

Therapy with the same drugs can be restarted after interruption (exceptions: efavirenz, combination of stavudine + didanosine, provided that therapeutic alternatives are available) [45, 46], since resistance development is not to be expected [32, 33] (AII,III, 1 abstention).

These recommendations also apply if pregnancy is first diagnosed during the course of the 1st trimester.
Table 3.1. Prevention of maternofetal HIV infection during a normal course of pregnancy.

<table>
<thead>
<tr>
<th>Status of the expectant mothers</th>
<th>No ART before pregnancy: Therapy indication according to German-Austrian guidelines for the therapy of HIV infection [29]</th>
<th>ART before pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication:</td>
<td>CD4>200-350/µl and HIV-RNA < 10,000 HIV copies/ml (RT-PCR/bDNA)</td>
<td>A) Clinical disease category B or C or B) CD4<200-350/µl and HIV-RNA > 10,000 HIV copies/ml (RT-PCR/bDNA)</td>
</tr>
<tr>
<td>Maternal treatment indication</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Fetal indication for prophylaxis</td>
<td>YES (prophylaxis with standard risk)</td>
<td>YES (prophylaxis with raised maternal transmission risk)</td>
</tr>
<tr>
<td>Therapy: 1st - 13th week of gestation</td>
<td>Resistance test to exclude a primary ZDV resistance</td>
<td></td>
</tr>
<tr>
<td>No ART</td>
<td>At least bimonthly monitoring of CD4 and VL.</td>
<td>A) Immediate initiation of ART</td>
</tr>
<tr>
<td></td>
<td>Start of ART in case of urgent maternal treatment indication (see above)</td>
<td>At least bimonthly monitoring of CD4 + VL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switching of ART in case of therapeutic failure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or B) Initiation of ART after week 13, depending on the urgency of the maternal treatment indication (see below).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At least monthly monitoring of CD4 + VL.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Start of the ART before week 13 in case of urgent maternal treatment indication</td>
</tr>
<tr>
<td>Therapy: 14th - 32nd week of gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No ART</td>
<td></td>
<td>A) Interruption of ART if clinical, immunological and virological status of the mother allows</td>
</tr>
<tr>
<td></td>
<td>e.g. with ZDV + 3TC/ddI + PI/NVP or premedication, if possible without EFV or d4T+ddI,</td>
<td>At least monthly monitoring of CD4 + VL.</td>
</tr>
<tr>
<td></td>
<td>At least bimonthly monitoring of CD4 and VL.</td>
<td>immediate restart of ART in case of urgent maternal treatment indication</td>
</tr>
<tr>
<td></td>
<td></td>
<td>or B) otherwise continuation of ART, if necessary substitution of efavirenz; substitution of stavudine or didanosine if these are given in combination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At least bimonthly monitoring of CD4 and VL.</td>
</tr>
<tr>
<td>Therapy: 32nd - 37th (+0) / 37th (+6) week of gestation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A) ZDV (AI, 56 %)</td>
<td></td>
<td>Beginning/restart of ART</td>
</tr>
<tr>
<td>B) ZDV + 3TC (BII, 20 %)</td>
<td></td>
<td>e.g. with ZDV + 3TC/ddI + PI / NVP or premedication, if possible without EFV or d4T+ddI.</td>
</tr>
<tr>
<td>C) HAART (BIII,20 %)</td>
<td>e.g. with ZDV + 3TC/ddI + PI / NVP if possible without EFV or d4T+ddI</td>
<td>At least bimonthly monitoring of CD4 and VL.</td>
</tr>
<tr>
<td></td>
<td>Change of ART if therapeutic failure occurs</td>
<td></td>
</tr>
</tbody>
</table>
3. HIV TRANSMISSION PROPHYLAXIS WITH STANDARD RISK PROFILE
(see Table 3.1)

Table 3.1. Continued

<table>
<thead>
<tr>
<th>37th (+0) – 37th (+6) week of gestation</th>
<th>Elective cesarean section</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ 1 mg/kg i.v. ZDV starting 3h before caesarean until separation, during the first hour a doubled loading-dose, i.e. 2 mg/kg no ZDV if d4T is a component of the maternal therapy</td>
</tr>
</tbody>
</table>

Newborn with a complication-free birth process

| 1: ZDV 4 x 2 mg/kg/d p. o. over 2-4 weeks |
| 2: ZDV 4 x 1.3 mg/kg/d i.v. over 10 days |
| Refraining from breast-feeding |

ZDV, zidovudine; ART, anti-retroviral combination therapy; with usually three medications: two nucleoside reverse transcriptase inhibitors + a protease inhibitor (PI) or nevirapine; 3TC, lamivudine; ddI, didanosine; d4T, stavudine; NVP, nevirapine; EFV, efavirenz; VL, viral load

3.3 Pre- and intra-operative intravenous zidovudine application starting 3 hours before cesarean section (2 mg/kg as a loading-dose for 1 hour followed by 1 mg/kg until the delivery of the child according to the original ACTG 076 protocol), even if zidovudine is not a component of the maternal therapy/prophylaxis during the pregnancy [77] (AI,II).

3.4 Postnatal zidovudine application for the child over 2-4 weeks orally (2 mg/kg every 6 hours) or 10 days i.v. (1.5 mg/kg every 6 hours) [78] (AI,II,III).

Since a higher prevalence of zidovudine-resistant HIV-strains can be expected in the future [40], the presence of wild-type HIV should be confirmed genotypically in the expectant mothers before zidovudine is applied (exclusion of genotypic resistance).

4. RISK-ADAPTED TRANSMISSION PROPHYLAXIS
(see Table 3.2)

For birth-related HIV transmission risks, HIV transmission prophylaxis should be escalated in a risk-adapted manner.

4.1 MULTIPLE PREGNANCY, PREMATURE LABOR, PREMATURE INFANTS 33rd (+0) – 36th (+6) GW AND DURATION OF MATERNAL ART/PROPHYLAXIS <4 WEEKS BEFORE BIRTH

Because of the increased risk of premature birth in multiple pregnancies prophylactic zidovudine application should already be started from the 29th (+0) week of gestation (AIII).

In case of premature labor, anti-retroviral combination prophylaxis should be started immediately with e.g. zidovudine + lamivudine + PI or nevirapine if the pregnant women is not yet receiving a combination
Table 3.2. Prevention of vertical HIV transmission in case of pregnancy - and birth complications

<table>
<thead>
<tr>
<th>Pregnancy complication:</th>
<th>Complication-free multiple pregnancy with prophylaxis >4 weeks</th>
<th>Duration of maternal ART/prophylaxis < 4 weeks before birth</th>
<th>Premature labor, premature birth in 33rd (+0) - 36th (+6) GW</th>
<th>AIS/amnionitis (premature) rupture of membranes >4h, premature birth <33rd (+0) GW</th>
<th>Viral load increase at the end of pregnancy > 10 000 HIV copies/ml</th>
<th>Lacking of prepartal prophylaxis</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV transmission risk</td>
<td>Normal</td>
<td>Raised</td>
<td>Very high</td>
<td>Very high</td>
<td>Very high</td>
<td>Very high</td>
</tr>
<tr>
<td>Measures in the 24th (+0) – 37th (+6) week of gestation</td>
<td>Prophylaxis onset brought forward with ZDV or ART after GW 29 (+0) because of the risk of premature birth</td>
<td>- Tocolysis, - if necessary antibiotics - RDS-prophylaxis - HAART e.g. with ZDV + 3TC/ddI + PI/NVP if possible without EFV or d4T+ddI</td>
<td>- 24th (+0) week of pregnancy prophylaxis premature rupture of membranes</td>
<td>- 33rd (+0) week of pregnancy prophylaxis premature rupture of membranes</td>
<td>- 36th (+6) week of pregnancy prophylaxis premature rupture of membranes</td>
<td>- 37th (+6) week of pregnancy prophylaxis premature rupture of membranes</td>
</tr>
</tbody>
</table>

Birth: 37th (+0) – 37th (+6) week of gestation

- Elective cesarean section (CS)
- If still possible (decision dependant of obstetrical situation) CS within 4 h after rupture of membranes + 1 mg/kg i.v. ZDV starting 3 h before cesarean until birth, during the first hour a doubled loading-dose, i.e. 2 mg/kg
- Elective cesarean section

Postnatal prophylaxis of the newborn [108]:

4 weeks:
- Dosing with newborns: ZDV 4 x 2mg/kg/d p.o.
- Refraining from breast-feeding

6 weeks:
- A) Dosing with newborns + premature babies ≥33rd (+0) GW: ZDV 4x 2mg/kg/d p.o.
- B) Dosing with premature babies < 33rd (+0) GW [109]:
 - 2x 2mg/kg/d p.o.
 - 2x 1.5mg/kg i.v.
 - Dosing with premature babies > 28th (+0) GW: from 3rd week of life:
 - 3x 2mg/kg/d p.o.
 - Dosing with premature babies ≤ 28th (+0) GW: from 4th week of life:
 - 3x 2mg/kg/d p.o.
- Refraining from breast-feeding

6 weeks:
- ZDV 4x 2mg/kg/d (note premature born dosing) + 3TC 2x 2mg/kg/d°
- A) with successful prenatal NVP application ° a further NVP dose with the newborn (2mg/kg) at an age of between 48-72h
- B) If NVP° is not given prepartally, two NVP doses (each 2mg/kg) postnatally to the newborn:
 - 1st dose as soon as possible after birth, 2nd dose on the 3rd day of life (no NVP, if NVP is a component of the maternal therapy during pregnancy)
- Refraining from breast-feeding

Refraining from breast-feeding
therapy, if a cesarean birth is not indicated because of immaturity of the baby and if labor can still be stopped (AI/III).

If a premature birth is unavoidable, the procedure described in 4.2 should be followed.

The recommended mode of birth is cesarean section (AI/II). If the prenatal part of the anti-retroviral prophylaxis regimen is considerably shorter than 4 weeks due to premature birth, the postnatal prophylaxis of the newborn should be prolonged according to the ACTG 076-study protocol where zidovudine is applied over 6 weeks orally [14, 63].

The newborn should be closely monitored during this prolonged prophylaxis. If problems such as anemia, neutropenia or lactate acidosis occur, benefits and risks of continuing the prophylaxis should be carefully weighed and in doubt prophylaxis should be discontinued.

4.2 AMNION INFECTION SYNDROME/AMNIONITIS, (PREMATURE) RUPTURE OF MEMBRANES > 4H, PREMATURITY BIRTH <32 RD (+ 0) GW AND VIRAL LOAD INCREASE AT THE END OF PREGNANCY >10 000 HIV COPIES/ML

In these obstetric emergency situations the risk of HIV-transmission is greatly increased [3, 15, 16, 79].

Under nevirapine ultrashort monoprophylaxis there is a considerable risk of resistance development in the mother (>20%). To reduce this risk either continuous combination therapy (in the case of treatment indications for the mother) or transient combination therapy - e.g. with zidovudine + didanosine over a period of 4-6 days (in addition to the one or two doses of nevirapine) should be considered as a possible protective measure against resistance development. 2-4 weeks after termination of transient combination therapy or ultrashort monoprophylaxis it should be evaluated, whether resistance has been induced.

The prepartal part of the prophylaxis should (as long as a standard combination therapy/prophylaxis is not already being given) be intensified by an (additional) dose of nevirapine* as long as this is still possible.

Postnatally, transmission prophylaxis can also be escalated in the newborn through application of nevirapine in addition to a combination prophylaxis with zidovudine and lamivudine (AI,III) [82, 83, 84]. In this case one dose of nevirapine should be given to the newborn after 72h if the mother has already received one dose prepartally. Two doses should be given to the newborn if the mother did not receive a prepartal dose of nevirapine or less than two hours has elapsed between nevirapine application and birth [80, 81]. If two doses are given, the first should be given immediately and the second within 72 h. If the HIV-positive expectant mother was treated with nevirapine during the pregnancy for a longer period of time, an enzyme induction might result in the newborn so that a more rapid breakdown of nevirapine occurs [53]. For this reason, with longer nevirapine therapy of expectant mothers during pregnancy, the drug must be applied at higher doses to the newborns (4 mg/kg).

The preferred mode of delivery is immediate cesarean section if the rupture of membranes does not already date back longer than 4 hours. For intervals >4 h after (premature) rupture of membranes, no advantage of cesarean section regarding transmission risks can be expected [85]. However, the decision to implement this must be based on obstetric considerations.

Rupture of membranes between the 24th and 28th gestational weeks represents a particularly problematic special case. Steroid induced pulmonary maturation is not effective before 24 hours after application and therefore contradicts measures required for preventing HIV transmission. In this case the high risk of permanent damage to the child due to lacking pulmonary...
maturation and the increased HIV transmission rate must be carefully weighted up.

4.3 Incision Injury to the Child

Aspiration and/or Ingestion of Bloody Amniotic Fluid

With an incision injury to the child during cesarean section or if bloody amniotic fluid can be aspirated from the stomach and/or the lungs, a percutaneous inoculation or a mucosal exposure to virus-containing body fluids must be assumed [23]. This justifies an intensification of the usual standard pediatric prophylaxis with zidovudine to a combination prophylaxis consisting of two NRTI-s comparable with post-exposure prophylaxis recommendations for adults [86] (AIII). An extended application of nevirapine (exceeding the ultra-short prophylaxis) for post-exposure prophylaxis can not at this time be recommended because of the lack of data regarding pharmacokinetics and safety.

Because of the lack of experience and formal approval of protease-inhibitors and NNRTIs for the therapy of newborns, and because of the dearth of comparative studies on the efficacy of double NRTI and triple drug post-exposure prophylaxis regimens, the recommendations for treatment escalation are limited to measures that have been proven effective and tolerable within the context of mother-to-child transmission prophylaxis.

5. Procedures with Incomplete Transmission Prophylaxis

5.1 With Verified HIV-Infection

If despite of a known HIV-infection no transmission prophylaxis has been carried out until the time of birth, this should be done at the latest during delivery and postnaturally. A benefit for the newborn can even be expected with incomplete transmission prophylaxis [63, 64, 87, 88, 89]. A combination of a nevirapine ultra-short prophylaxis (one dose prepartally for the mother, one dose postnaturally for the newborn or 2 doses postnaturally) with a six-week zidovudine or zidovudine + lamivudine application for the newborn is then recommended (AI).

According to data from the HIVNET 012 study, a single dose of nevirapine shortly before birth combined with a single dose given to the newborn within 72 hours of birth is more effective in preventing vertical transmission than the immediate pre- and intrapartal administration of zidovudine combined with a week long postnatal administration of zidovudine to the newborn [87].

Zidovudine therapy started within 48 hours of birth according to the ACTG 076 protocol (application over 6 weeks) can still lower the HIV transmission rate. In a retrospective US study a transmission rate of 9.3 % has been reported with initiation of zidovudine therapy in the first 48 hours after vaginal delivery, as compared to a rate of 18.4% for a later onset of therapy (>48 h). Without any therapy, 26.6 % of the children became infected.

5.2. Situation with an Unclear HIV Infection Status

If a patient presents late in her third trimester without HIV-Test and sufficient time remains to perform a screening test (and if necessary a confirmatory test), this should be offered without delay, so that intrapartal and postpartal transmission prophylaxis can be carried out whenever the test proves positive [64].

The HIV-antibody test should be accompanied by competent personal counseling, provided if necessary by an appropriate institution [1, 2]. The refusal to undergo HIV-antibody testing must be respected. In cases when the HIV status of the pregnant women is unknown and there is no time to carry out regular testing and counseling, the experts were unable to reach a consensus on the recommendations to be made (no expert consensus!).

In this case there are three possible options:

- No prophylactic measures, as long as no HIV test results are available (CIII).
- With unambiguous anamnestic risk factors prophylactic measures should be offered (such as cesarean birth, application of medications). Cessation of measures, as soon as HIV infection is ruled out by testing (CIII).
- An HIV rapid test can be offered and prophylactic measures can be instituted with positive rapid test results, but this should be ceased if the confirmation test proves negative (CIII).

Attention! The HIV prevalence in pregnant women in Germany is estimated to be 0.5 to 0.6 per 1,000 in bigger cities and 0.1 to 0.2 per 1 000; in the remaining areas [90]. Even with the high specificity of the two rapid tests approved in Germany (99,7 %, 3 false-positive results per 1,000 tests), the predictive value of a positive rapid test is small in the absence of other anamnestic risk factors (in an unselected population it would be expected that only approximately a fifth to a third of the positive HIV rapid test results can be confirmed as true HIV positive!). This must of course be considered when the expectant mothers are being counseled and informed of the findings.

An opportunity to further increase the specificity arises from controlling a positive rapid test result with another, second rapid test. If the second test reports a negative finding, the probability is high that the first test result was false positive.

6. Mode of Delivery

Delivery by elective cesarean section (before the onset of labor) results in a reduction of the vertical transmission risk, by approximately 50%, i.e. in a 8.2% vs. 16.8% risk associated with vaginal birth [76]. Elective Cesarean section should therefore represent an essential component of every prophylactic HIV-transmission regimen (AI,II). Preliminary and still unpublished studies have shown no measurable additional protective effect of cesarean birth amongst expectant mothers with very low - (VL < 1000 copies/ml) or not detectable HIV-viral loads and a complication-free birth process [91]. If these findings can be confirmed, the
Expectant mothers should be informed about this when being counseled about the optimal mode of birth, although it should also be pointed out that the risks of birth complications and/or of a local viral load at birth are lower with a cesarean section [21, 23, 92, 93, 94, 95, 96]. Experience suggests that a raised complication rate on cesarean section compared to non-HIV1 positive expectant mothers is not to be expected [97, 98, 99, 100].

Preoperative/ intra-operative i.v. zidovudine therapy of the mother at a dose of 1 mg/kg/h after a loading-dose of 2 mg/kg over 1 hour until delivery also represents a prophylactic measure. The elective section should be carried out by the most experienced obstetrician available utilizing an operation technique which avoids excessive bleeding, performed between 37(+0) to 37(+6) gestational week on a labor-free uterus under i.v. application of zidovudine.

It should be noted that an increased rate of premature birth has been documented on several studies in mothers treated with an anti-retroviral combination therapy [101]. However, two large American studies [5, 36] failed to find an increased rate of premature birth under HAART. Considering these contradictory findings, special attention must be paid towards women with anti-retroviral combination therapy or other risk factors for premature birth in the last trimester so that a premature birth or other emergency modes of birth under unfavorable conditions can be avoided. This is warranted by frequent antepartum controls in the third trimester and, under certain conditions, by early hospitalization.

It is urgently recommended that an HIV post-exposure prophylactic emergency set be kept in stock by the hospital and that all medical personnel involved is informed about indications and procedures related to HIV post-exposure prophylaxis after occupational HIV exposure (e.g. following needle prick – or knife injuries to the operating surgeon).

7. Postnatal Care of the Newborn in the Delivery Room

Amniotic fluid can be contaminated with HIV-1 by the opening of the amniotic sac during both a spontaneous delivery and a cesarean section. With a vaginal delivery birth there is also the possibility that virus-containing vaginal secretions or maternal blood gain access to the body openings of a child [23, 93]. Unlike adults, the mucous membranes of the respiratory and gastrointestinal tracts do not represent barriers to HIV in the newborn, and the still anacidic stomach can fail to inactivate the virus. Higher transmission rates from HIV-infected mothers to breast-fed (as opposed to bottle-fed) children confirm that the oral uptake of virus-containing fluids plays a considerable role in vertical transmission [102].

Practical procedure in the delivery room:

The use of sterile gloves is recommended for initial treatment. Before suction of the mouth, the oral cavity and the nostrils should be cleaned of any potentially HIV-1 contaminated amniotic fluid using sterile swabs soaked in 0.9% physiological saline. After stabilization of vital functions, all body openings (ears, eyes, anus and genitals) should be cleaned in the same way.

Before the final severance of the umbilical cord, gloves must be changed in order to avoid any HIV-contamination of the umbilical stump.

8. Postnatal Treatment of the Child

The recommendation of oral zidovudine application over 6 weeks to the child at a dose of 2 mg/kg every 6 hours results from the findings of the ACTG 076 study [14]. After oral zidovudine application during pregnancy, intravenous zidovudine infusion during birth, and elective cesarean section, this represents the fourth component of HIV transmission prophylaxis. A de-escalation of the six-week postnatal component (according to the ACTG-076 protocol) of the transmission prophylaxis is justified by the results of a study carried out in Thailand involving a shortened zidovudine regimen and considering experience gained in Germany until now. The Thai study showed that the six week therapy produced an additional benefit as compared to a three day postnatal zidovudine dosing only when the duration of prepartal prophylaxis was very short (from the 36th week of gestation with spontaneous delivery as the predominant mode of birth) [63]. In Berlin, satisfactory results (no transmissions) have been achieved (involving a small number of cases n = 57 [78]) with an i.v. dosing of 1.3 mg/kg every 6 hours over 10 days if the prepartal prophylaxis was started in the 32nd week of gestation. The majority of experts conclude from this that postnatal zidovudine should be given to the child, although they consider a reduction of the duration of postnatal zidovudine transmission prophylaxis to 2 to 4 weeks (2 mg/kg orally every 6 hours) as usually sufficient (AI, II). Exceptions to this rule include pregnancy and birth complications as well as failure to implement a maternal prophylaxis (see 4.2, 4.3 and 5.1).

9. Refraining from Breast Feeding

Breast-fed children of HIV-1-positive mothers are infected twice as frequently as formula-fed children of HIV-1 infected mothers. The HI viruses and HIV infected lymphocytes detectable in the breast milk as well as inflammation/injuries of the nipple or the mammary gland involving exudation of infectious wound secretion/ blood contribute to this raised infection rate. The WHO therefore recommends that babies of HIV-infected mothers should be fed with formula food in industrialized countries with access to clean drinking water. All HIV-positive mothers should therefore be urged to avoid breast feeding [103, 104, 105].

*Birth risks: Cymbal end, twin pregnancy, birth obstacles, rec. vaginal infections; possible birth complications: prolonged bulrush jump, hemmorhages, birth standstill
10. Postnatal Care of the Child

From the 32nd GW IgG antibodies, including also IgG antibody against HIV-1, are transmitted from the mother to the fetus across the placenta. Since the conventional HIV-1 test is an antibody test, all, i.e. even non-infected children of HIV-1-infected mothers, are serologically HIV-1 positive until the maternal antibodies disappear.

Detection of HIV-1 during the first year of life must therefore be completed using HIV1-PCR. It is possible to detect either HIV-1 DNA or HIV-1 RNA. Up to now it is unclear which of this two test procedures is the more sensitive with respect to the special situation of neonatal infection diagnostics. All positive HIV-1 test results should be confirmed as rapidly as possible by a second blood test.

It should be noted that commercially available HIV-PCR kits do not cover all HIV-1 subtypes or mosaic viruses (not subtype B) and may provide false negative results [106]. With an HIV-1-positive parent that might be infected with a subtype other than B (especially if the patient originates from outside Western Europe or North America), the maternal blood must always be analyzed as a positive sample in addition to the child's blood (if possible before the onset of an anti-retroviral therapy/ prophylaxis of the mother!).

If the maternal blood is unambiguously HIV-1-positive in the PCR, the result of the HIV-1-PCR of the child should also be utilized. If the detection of HIV-1 nucleic acids fails with the maternal blood (negative or borderline findings), the HIV-1 PCR analysis of the child's blood can not be relied upon. Then, either a special examination must be initiated using subtype-adapted PCR primers in specialized laboratories, or the disappearance of the maternal HIV-1 antibody at the end of the 2nd year of life must be waited for in order to reliably exclude an HIV-1 infection in the child. If the HIV-1 antibodies in the HIV-1 exposed child persist, an HIV-1 infection must be assumed. As a matter of definition, HIV-1-exposed children are regarded as HIV-1 negative if an HIV-1 Western blot proves completely negative with normal immunoglobulin concentrations.

Amongst children of HIV-1 positive mothers, two negative HIV-1 PCR findings are required to exclude an HIV-1 infection. The first HIV-1 PCR can be carried out between the first and fourth month of life. The second examination should be performed after the fourth month because only thereafter the sensitivity and specificity of the HIV-1-PCR is sufficiently high [107].

Although these two HIV-1-PCR tests are adequate for a confirmation or exclusion of an HIV-1 infection, an HIV-1 PCR should also be done already in the first month of life, since an early as possible diagnosis of HIV-1 transmission in the child is important for prophylaxis against Pneumocystis carinii (starting if possible 4-6 weeks after birth when HIV transmission has occurred) and the early-life anti-retroviral therapy in the first months of life.

With negative HIV-1 PCR findings as well, disappearance of maternal antibodies in HIV-1 exposed children should be documented at least once.

It must be stressed here that because of the intrauterine and postnatal exposure of a child to anti-retroviral substances with still unknown long-term consequences, clinical surveillance of the children is indispensable to get aware of any long-term damage.

11. Hotline, Notification of Unexpected Observations and Experiences

Telephone hotline for problems regarding HIV infections during pregnancy: 0178-2820282

Further updating of the recommendations

Since only little or even no results or information are available regarding the application of newer drugs or combinations of drugs during pregnancy or in newborns, all physicians involved in this work are urgently invited to inform us of any new or unexpected observations and results, e.g. by notifying us by e-mail at the address given in the "address for correspondence", or by notifying the "anti-retroviral Pregnancy Registry" (APR), the largest register for recording experiences with anti-retroviral substances during pregnancy:

Tel-no.: +1-910-256-0238
Fax: +1-910-256-0637 or +44 1895 825 005
Website: www.APRegistry.com

LITERATURE

2. Deutsche AIDS-Hilfe e.V.: Der heutige Wissensstand 28. überarbeitete Auflage, 2002

77. CDC: Recommendations of the U.S. Public Health Service Task Force on the Use of Zidovudine to Reduce Perinatal Transmission of Human Immunodeficiency Virus. MMWR 1994; 43/RR-11

85. Read J: Duration of ruptured membranes and vertical transmission of HIV-1: a metaanalysis from fifteen prospective cohort studies. 7th Conference on Retroviruses and Opportunistic Infections, January 30-February 2, 2000, San Francisco; Abstract 659

86. Deutsch-Osterreichische Empfehlungen zur postexpositionellen Prophylaxe nach HIV-Exposition (Februar 2001)

URL: http://www.rki.de/INFEKT/AIDS_STD/EXPO/HIV.HTM

89. Owor M, Deseyve M, Duefield C, et al.: The one year safety and efficacy data of the HIVNET 012 trial. 13th World AIDS Conference. Durban 2000, Abstr. # LbOr1

100. Watts DH, Lambert JS, Stehln ER et al.: Complications according to mode of delivery among human immunodeficiency virus-infected women with CD4 lymphocyte counts of < or = 500/microL. Am J Obstet Gynecol 2000, 183:100-107

101. European Collaborative Study and the Swiss Mother + Child HIV Cohort Study: Combination anti-retroviral therapy and duration of pregnancy. AIDS 2000; 14: 2913-20

108. CENTERS OF DISEASE CONTROL: Guidelines for the use of anti-retroviral agents in pediatric HIV infection. MMWR 1998; 47: 1 - 43

Internetadresse: http://www.hivatis.org

Addresses for correspondence:
Dr. med. Bernd Buchholz, Mannheim
E-Mail: bernd.buchholz@kikli.ma.uni-heidelberg.de

Prof. Dr. med. Norbert H. Brockmeyer
E-Mail: n.brockmeyer@derma.de